אנו משתמשים ב-Cookies כדי לשפר את החוויה שלך. כדי לקיים ההנחיה החדשה של e-Privacy, עלינו לבקש את הסכמתך להגדיר את ה-Cookies. קבלת מידע נוסף.
435.00 ₪
Linear Algebra and Learning from Data
435.00 ₪
ISBN13
9780692196380
יצא לאור ב
Wellesley
זמן אספקה
21 ימי עסקים - לא במלאי בארץ
עמודים / Pages
446
פורמט
Hardback
תאריך יציאה לאור
31 בינו׳ 2019
From Gilbert Strang, the first textbook that teaches linear algebra together with deep learning and neural nets.
Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special marices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
| עמודים / Pages | 446 |
|---|---|
| פורמט | Hardback |
| ISBN10 | 0692196382 |
| יצא לאור ב | Wellesley |
| תאריך יציאה לאור | 31 בינו׳ 2019 |
| תוכן עניינים | Deep learning and neural nets; Preface and acknowledgements; Part I. Highlights of Linear Algebra; Part II. Computations with Large Matrices; Part III. Low Rank and Compressed Sensing; Part IV. Special Matrices; Part V. Probability and Statistics; Part VI. Optimization; Part VII. Learning from Data: Books on machine learning; Eigenvalues and singular values; Rank One; Codes and algorithms for numerical linear algebra; Counting parameters in the basic factorizations; Index of authors; Index; Index of symbols. |
Login and Registration Form