‏918.00 ₪

Thermoelectric Energy Conversion - Basic Concepts and Device Applications

‏918.00 ₪
ISBN13
9783527340712
יצא לאור ב
Weinheim
זמן אספקה
21 ימי עסקים
עמודים
336
פורמט
Hardback
תאריך יציאה לאור
11 באוק׳ 2017
שם סדרה
Advanced Micro and Nanosystems
This ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity, thus building a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
מידע נוסף
עמודים 336
פורמט Hardback
ISBN10 3527340718
יצא לאור ב Weinheim
תאריך יציאה לאור 11 באוק׳ 2017
תוכן עניינים About the Editors xv Series Editor s Preface xvii List of Contributors xix 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV VI Alloys 1 Yaniv Gelbstein 1.1 Introduction 1 1.2 IV VI Alloys for Waste Heat Thermoelectric Applications 2 1.3 Thermodynamically Driven Phase Separation Reactions 6 1.4 Selected IV VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions 9 1.5 Concluding Remarks 11 References 11 2 Nanostructured Materials: Enhancing the Thermoelectric Performance 15 Ngo Van Nong and Le Thanh Hung 2.1 Introduction 15 2.2 Approaches for Improving ZT 16 2.3 Recent Progress in Developing Bulk Thermoelectric Materials 18 2.4 Bulk Nanostructured Thermoelectric Materials 20 2.4.1 Bi2Te3-Based Nanocomposites 20 2.4.2 PbTe-Based Nanostructured Materials 21 2.4.3 Half-Heusler Alloys 22 2.4.4 Nanostructured Skutterudite Materials 24 2.4.5 Nanostructured Oxide Materials 26 2.5 Outlook and Challenges 28 References 29 3 Organic Thermoelectric Materials 37 Simone Fabiano, Ioannis Petsagkourakis, Guillaume Fleury, Georges Hadziioannou and Xavier Crispin 3.1 Introduction 37 3.2 Seebeck Coefficient and Electronic Structure 41 3.3 Seebeck Coefficient and Charge Carrier Mobility 44 3.4 Optimization of the Figure of Merit 45 3.5 N-Doping of Conjugated Polymers 46 3.6 Elastic Thermoelectric Polymers 49 3.7 Conclusions 49 Acknowledgments 50 References 50 4 Silicon for Thermoelectric Energy Harvesting Applications 53 Dario Narducci, Luca Belsito and Alex Morata 4.1 Introduction 53 4.1.1 Silicon as a Thermoelectric Material 53 4.1.2 Current Uses of Silicon in TEGs 54 4.2 Bulk and Thin-Film Silicon 55 4.2.1 Single-Crystalline and Polycrystalline Silicon 55 4.2.2 Degenerate and Phase-Segregated Silicon 58 4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers 61 4.3.1 Introduction 61 4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials 61 4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials 64 4.4 Bottom-Up Nanowires 64 4.4.1 Preparation Strategies 64 4.4.2 Chemical Vapor Deposition (CVD) 65 4.4.3 Molecular Beam Epitaxy (MBE) 66 4.4.4 Laser Ablation 66 4.4.5 Solution-Based Techniques 67 4.4.6 Catalyst Materials 67 4.4.7 Catalyst Deposition Methods 68 4.5 Material Properties and Thermoelectric Efficiency 69 4.6 Top-Down Nanowires 69 4.6.1 Preparation Strategies 69 4.6.2 Material Properties and Thermoelectric Efficiency 73 4.7 Applications of Bulk and Thin-Film Silicon and SiGe Alloys to Energy Harvesting 75 4.8 Applications of Nanostructured Silicon to Energy Harvesting 77 4.8.1 Bottom-Up Nanowires 77 4.8.2 Top-Down Nanowires 78 4.9 Summary and Outlook 81 Acknowledgments 82 References 82 5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency 93 Hans-Fridtjof Pernau 5.1 Introduction Hitting the Target 93 5.2 Thermal Transport in Gases and Solid-State Materials 94 5.3 The Combined Parameter ZT-Value 97 5.3.1 Electrical Conductivity 98 5.3.2 Seebeck Coefficient 101 5.3.3 Thermal Conductivity 103 5.4 Summary 107 Acknowledgments 107 References 107 6 Preparation and Characterization of TE Interfaces/Junctions 111 Gao Min and Matthew Philips 6.1 Introduction 111 6.2 Effects of Electrical and Thermal Contact Resistances 111 6.3 Preparation of Thermoelectric Interfaces 114 6.4 Characterization of Contact Resistance Using Scanning Probe 117 6.5 Characterization of Thermal Contact Using Infrared Microscope 121 6.6 Summary 123 Acknowledgments 124 References 124 7 Thermoelectric Modules: Power Output, Efficiency, and Characterization 127 Jorge Garcia-Canadas 7.1 Introduction 127 7.1.1 Moving from Materials to a Device 127 7.1.2 Differences in Characterization 128 7.1.3 Chapter Summary 130 7.2 The Governing Equations 130 7.2.1 Particle Fluxes and the Continuity Equation 130 7.2.2 Energy Fluxes and the Heat Equation 132 7.3 Power Output and Efficiency 136 7.3.1 Power Output 137 7.3.2 Efficiency 139 7.4 Characterization of Devices 142 7.4.1 Thermal Contacts 142 7.4.2 Additional Considerations 143 7.4.3 Constant Heat Input and Constant T 144 References 145 8 Integration of Heat Exchangers with Thermoelectric Modules 147 Alireza Rezaniakolaei 8.1 Introduction 147 8.2 Heat Exchanger Design Consideration in TEG Systems 148 8.3 Cold Side Heat Exchanger for TEG Maximum Performance 150 8.4 Cooling Technologies and Design Challenges 154 8.5 Microchannel Heat Exchanger 156 8.6 Coupled and Comprehensive Simulation of TEG System 157 8.6.1 Governing Equations 157 8.6.2 Effect of Heat Exchanger Inlet/Outlet Plenums on TEG Temperature Distribution 158 8.6.3 Modified Channel Configuration 162 8.6.4 Flat-Plate Heat Exchanger versus Cross-Cut Heat Exchanger 164 8.6.5 Effect of Channel Hydraulic Diameter 167 8.7 Power Efficiency Map 168 8.8 Section Design Optimization in TEG System 169 8.9 Conclusion 170 Acknowledgment 170 Nomenclature 170 References 172 9 Power Electronic Converters and Their Control in Thermoelectric Applications 177 Erik Schaltz and Elena A. Man 9.1 Introduction 177 9.2 Building Blocks of Power Electronics 177 9.3 Power Electronic Topologies 179 9.3.1 Buck Converter 180 9.3.2 Boost Converter 182 9.3.3 Non-Inverting Buck Boost Converter 183 9.3.4 Flyback Converter 184 9.4 Electrical Equivalent Circuit Models for Thermoelectric Modules 185 9.5 Maximum Power Point Operation and Tracking 186 9.5.1 MPPT-Methods 187 9.6 Case Study 191 9.6.1 Specifications 192 9.6.2 Requirements 193 9.6.3 Design of Passive Components 193 9.6.4 Transfer Functions 194 9.6.5 Design of Current Controller 196 9.6.6 MPPT Implementation 196 9.6.7 Design of Voltage Controller 198 9.7 Conclusion 201 References 201 10 Thermoelectric Energy Harvesting for Powering Wearable Electronics 205 Luca Francioso and Chiara De Pascali 10.1 Introduction 205 10.2 Human Body as Heat Source for Wearable TEGs 205 10.3 TEG Design for Wearable Applications: Thermal and Electrical Considerations 208 10.4 Flexible TEGs: Deposition Methods and Thermal Flow Design Approach 212 10.4.1 Deposition Methods 212 10.4.2 Heat Flow Direction Design Approach in Wearable TEG 217 10.5 TEG Integration in Wearable Devices 218 10.6 Strategies for Performance Enhancements and Organic Materials 221 10.6.1 Organic Thermoelectric Materials 223 References 225 11 Thermoelectric Modules as Efficient Heat Flux Sensors 233 Gennadi Gromov 11.1 Introduction 233 11.1.1 Applications of Heat Flux Sensors 233 11.1.2 Units of Heat Flux and Characteristics of Sensors 234 11.1.3 Modern Heat Flux Sensors 235 11.1.4 Thermoelectric Heat Flux Sensors 236 11.2 Applications of Thermoelectric Modules 238 11.3 Parameters of Thermoelectric Heat Flux Sensors 240 11.3.1 Integral Sensitivity Sa 240 11.3.2 Sensitivity Se 241 11.3.3 Thermal Resistance RT 241 11.3.4 Noise Level 241 11.3.5 Sensitivity Threshold 241 11.3.6 Noise-Equivalent Power NEP 242 11.3.7 Detectivity D* 242 11.3.8 Time Constant 243 11.4 Self-Calibration Method of Thermoelectric Heat Flux Sensors 243 11.4.1 Sensitivity 243 11.4.2 Values of NEP and D* 247 11.5 Sensor Performance and Thermoelectric Module Design 247 11.5.1 Dependence on Physical Properties 248 11.5.2 Design Parameters 248 11.6 Features of Thermoelectric Heat Flux Sensor Design 249 11.7 Optimization of Sensors Design 250 11.7.1 Properties of Thermoelectric Material 251 11.7.2 Parameters of Thermoelectric Module 251 11.7.3 Features of Real Design 255 11.8 Experimental Family of Heat Flux Sensors 257 11.8.1 HTX Heat Flux and Temperature Sensors (HT Heat Flux and Temperature) 257 11.8.2 HFX Heat Flux Sensors without Temperature (HF Heat Flux) 257 11.8.3 HRX-IR Radiation Heat Flux Sensors (HR Heat Flux Radiation) 257 11.9 Investigation of Sensors Performance 259 11.9.1 General Provisions 259 11.9.2 Calibration of Sensor Sensitivity 259 11.9.3 Sensitivity Temperature Dependence 261 11.9.4 Thermal Resistance 263 11.9.5 Typical Temperature Dependence of the Seebeck Coefficient 264 11.9.6 Conclusions 264 11.10 Heat Flux Sensors at the Market 265 11.11 Examples of Applications 268 11.11.1 Microcalorimetry: Evaporation of Water Drop 268 11.11.2 Measurement of Heat Fluxes in Soil 269 11.11.3 Thermoelectric Ice Sensor 269 11.11.4 Laser Power Meters 274 References 278 12 Photovoltaic Thermoelectric Hybrid Energy Conversion 283 Ning Wang 12.1 Background and Theory 283 12.1.1 Introduction 283 12.1.2 PV Efficiency 285 12.1.3 TEG Efficiency 285 12.1.4 PVTE Module Generated Power and Efficiency 285 12.1.5 Energy Loss 285 12.1.6 Cost 286 12.1.7 Overall Feasibility 289 12.2 Different Forms of PVTE Hybrid Systems: The State of the Art 292 12.2.1 PVTE Hybrid Systems Based on Dye-Sensitized Solar Cell (DSSC) 292 12.2.2 Dye-Sensitized Solar Cell with Built-in Nanoscale Bi2Te3 TEG 294 12.2.3 PVTE Using Solar Concentrator 294 12.2.4 Solar Thermoelectric Device Based on Bi2Te3 and Carbon Nanotube Composites 296 12.3 Optimizations of PVTE Hybrid Systems 297 12.3.1 Geometry Optimization of Thermoelectric Devices in a Hybrid PVTE System 297 12.3.2 Enhancing the Overall Heat Conduction and Light Absorption 298 12.3.3 Fishnet Meta-Structure for IR Band Trapping for Enhancement of PVTE Hybrid Systems 299 12.3.4 Full-Spectrum Photon Management of Solar Cell Structures for PVTE Hybrid Systems 300 12.3.5 An Automotive PVTE Hybrid Energy System Using Maximum Power Point Tracking 301 12.4 Application of PVTE Hybrid Systems 302 12.4.1 Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization 303 12.4.2 Development of an Energy-Saving Module via Combination of PV Cells and TE Coolers for Green Building Applications 303 12.4.3 Performance of Solar Cells Using TE Module in Hot Sites 303 12.5 Summary 306 References 307 Index 311
זמן אספקה 21 ימי עסקים