‏845.00 ₪

Introduction to Reticular Chemistry - Metal-Organi c Frameworks and Covalent Organic Frameworks

‏845.00 ₪
ISBN13
9783527345021
יצא לאור ב
Weinheim
זמן אספקה
21 ימי עסקים
עמודים
552
פורמט
Hardback
תאריך יציאה לאור
24 באפר׳ 2019
A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.
מידע נוסף
עמודים 552
פורמט Hardback
ISBN10 3527345027
יצא לאור ב Weinheim
תאריך יציאה לאור 24 באפר׳ 2019
תוכן עניינים About the Companion Website xvii Foreword xix Acknowledgment xxi Introduction xxiii Abbreviations xxvii Part I Metal-Organic Frameworks 1 1 Emergence of Metal-Organic Frameworks 3 1.1 Introduction 3 1.2 Early Examples of Coordination Solids 3 1.3 Werner Complexes 4 1.4 Hofmann Clathrates 6 1.5 Coordination Networks 8 1.6 Coordination Networks with Charged Linkers 15 1.7 Introduction of Secondary Building Units and Permanent Porosity 16 1.8 Extending MOF Chemistry to 3D Structures 17 1.8.1 Targeted Synthesis of MOF-5 18 1.8.2 Structure of MOF-5 19 1.8.3 Stability of Framework Structures 20 1.8.4 Activation of MOF-5 20 1.8.5 Permanent Porosity of MOF-5 21 1.8.6 Architectural Stability of MOF-5 22 1.9 Summary 23 References 24 2 Determination and Design of Porosity 29 2.1 Introduction 29 2.2 Porosity in Crystalline Solids 29 2.3 Theory of Gas Adsorption 31 2.3.1 Terms and Definitions 31 2.3.2 Physisorption and Chemisorption 31 2.3.3 Gas Adsorption Isotherms 33 2.3.4 Models Describing Gas Adsorption in Porous Solids 35 2.3.4.1 Langmuir Model 37 2.3.4.2 Brunauer-Emmett-Teller (BET) Model 38 2.3.5 Gravimetric Versus Volumetric Uptake 40 2.4 Porosity in Metal-Organic Frameworks 40 2.4.1 Deliberate Design of Pore Metrics 40 2.4.2 Ultrahigh Surface Area 46 2.5 Summary 52 References 52 3 Building Units of MOFs 57 3.1 Introduction 57 3.2 Organic Linkers 57 3.2.1 Synthetic Methods for Linker Design 59 3.2.2 Linker Geometries 62 3.2.2.1 Two Points of Extension 62 3.2.2.2 Three Points of Extension 64 3.2.2.3 Four Points of Extension 64 3.2.2.4 Five Points of Extension 69 3.2.2.5 Six Points of Extension 69 3.2.2.6 Eight Points of Extension 69 3.3 Secondary Building Units 71 3.4 Synthetic Routes to Crystalline MOFs 74 3.4.1 Synthesis of MOFs from Divalent Metals 74 3.4.2 Synthesis of MOFs from Trivalent Metals 76 3.4.2.1 Trivalent Group 3 Elements 76 3.4.2.2 Trivalent Transition Metals 76 3.4.3 Synthesis of MOFs from Tetravalent Metals 77 3.5 Activation of MOFs 77 3.6 Summary 79 References 80 4 Binary Metal-Organic Frameworks 83 4.1 Introduction 83 4.2 MOFs Built from 3-, 4-, and 6-Connected SBUs 83 4.2.1 3-Connected (3-c) SBUs 83 4.2.2 4-Connected (4-c) SBUs 84 4.2.3 6-Connected (6-c) SBUs 90 4.3 MOFs Built from 7-, 8-, 10-, and 12-Connected SBUs 97 4.3.1 7-Connected (7-c) SBUs 97 4.3.2 8-Connected (8-c) SBUs 98 4.3.3 10-Connected (10-c) SBUs 103 4.3.4 12-Connected (12-c) SBUs 105 4.4 MOFs Built from Infinite Rod SBUs 112 4.5 Summary 114 References 114 5 Complexity and Heterogeneity in MOFs 121 5.1 Introduction 121 5.2 Complexity in Frameworks 123 5.2.1 Mixed-Metal MOFs 123 5.2.1.1 Linker De-symmetrization 123 5.2.1.2 Linkers with Chemically Distinct Binding Groups 123 5.2.2 Mixed-Linker MOFs 126 5.2.3 The TBU Approach 132 5.2.3.1 Linking TBUs Through Additional SBUs 133 5.2.3.2 Linking TBUs Through Organic Linkers 134 5.3 Heterogeneity in Frameworks 135 5.3.1 Multi-Linker MTV-MOFs 136 5.3.2 Multi-Metal MTV-MOFs 136 5.3.3 Disordered Vacancies 139 5.4 Summary 141 References 141 6 Functionalization of MOFs 145 6.1 Introduction 145 6.2 In situ Functionalization 146 6.2.1 Trapping of Molecules 146 6.2.2 Embedding of Nanoparticles in MOF Matrices 147 6.3 Pre-Synthetic Functionalization 149 6.4 Post-Synthetic Modification 149 6.4.1 Functionalization Involving Weak Interactions 150 6.4.1.1 Encapsulation of Guests 150 6.4.1.2 Coordinative Functionalization of Open Metal Site 151 6.4.1.3 Coordinative Functionalization of the Linker 151 6.4.2 PSM Involving Strong Interactions 153 6.4.2.1 Coordinative Functionalization of the SBUs by AIM 154 6.4.2.2 Post-Synthetic Ligand Exchange 154 6.4.2.3 Coordinative Alignment 156 6.4.2.4 Post-Synthetic Linker Exchange 156 6.4.2.5 Post-Synthetic Linker Installation 160 6.4.2.6 Introduction of Ordered Defects 163 6.4.2.7 Post-Synthetic Metal Ion Exchange 164 6.4.3 PSM Involving Covalent Interactions 165 6.4.3.1 Covalent PSM of Amino-Functionalized MOFs 166 6.4.3.2 Click Chemistry and Other Cycloadditions 168 6.4.4 Covalent PSM on Bridging Hydroxyl Groups 171 6.5 Analytical Methods 171 6.6 Summary 172 References 173 Part II Covalent Organic Frameworks 177 7 Historical Perspective on the Discovery of Covalent Organic Frameworks 179 7.1 Introduction 179 7.2 Lewis' Concepts and the Covalent Bond 180 7.3 Development of Synthetic Organic Chemistry 182 7.4 Supramolecular Chemistry 183 7.5 Dynamic Covalent Chemistry 187 7.6 Covalent Organic Frameworks 189 7.7 Summary 192 References 193 8 Linkages in Covalent Organic Frameworks 197 8.1 Introduction 197 8.2 B-O Bond Forming Reactions 197 8.2.1 Mechanism of Boroxine, Boronate Ester, and Spiroborate Formation 197 8.2.2 Borosilicate COFs 198 8.2.3 Spiroborate COFs 200 8.3 Linkages Based on Schiff-Base Reactions 201 8.3.1 Imine Linkage 201 8.3.1.1 2D Imine COFs 201 8.3.1.2 3D Imine COFs 203 8.3.1.3 Stabilization of Imine COFs Through Hydrogen Bonding 205 8.3.1.4 Resonance Stabilization of Imine COFs 206 8.3.2 Hydrazone COFs 207 8.3.3 Squaraine COFs 209 8.3.4 ss-Ketoenamine COFs 210 8.3.5 Phenazine COFs 211 8.3.6 Benzoxazole COFs 212 8.4 Imide Linkage 213 8.4.1 2D Imide COFs 214 8.4.2 3D Imide COFs 215 8.5 Triazine Linkage 216 8.6 Borazine Linkage 217 8.7 Acrylonitrile Linkage 218 8.8 Summary 220 References 221 9 Reticular Design of Covalent Organic Frameworks 225 9.1 Introduction 225 9.2 Linkers in COFs 227 9.3 2D COFs 227 9.3.1 hcb Topology COFs 229 9.3.2 sql Topology COFs 231 9.3.3 kgm Topology COFs 233 9.3.4 Formation of hxl Topology COFs 235 9.3.5 kgd Topology COFs 236 9.4 3D COFs 238 9.4.1 dia Topology COFs 238 9.4.2 ctn and bor Topology COFs 239 9.4.3 COFs with pts Topology 240 9.5 Summary 241 References 242 10 Functionalization of COFs 245 10.1 Introduction 245 10.2 In situ Modification 245 10.2.1 Embedding Nanoparticles in COFs 246 10.3 Pre-Synthetic Modification 247 10.3.1 Pre-Synthetic Metalation 248 10.3.2 Pre-Synthetic Covalent Functionalization 249 10.4 Post-Synthetic Modification 250 10.4.1 Post-Synthetic Trapping of Guests 250 10.4.1.1 Trapping of Functional Small Molecules 250 10.4.1.2 Post-Synthetic Trapping of Biomacromolecules and Drug Molecules 251 10.4.1.3 Post-Synthetic Trapping of Metal Nanoparticles 251 10.4.1.4 Post-Synthetic Trapping of Fullerenes 253 10.4.2 Post-Synthetic Metalation 253 10.4.2.1 Post-Synthetic Metalation of the Linkage 253 10.4.2.2 Post-Synthetic Metalation of the Linker 255 10.4.3 Post-Synthetic Covalent Functionalization 256 10.4.3.1 Post-Synthetic Click Reactions 256 10.4.3.2 Post-Synthetic Succinic Anhydride Ring Opening 259 10.4.3.3 Post-Synthetic Nitro Reduction and Aminolysis 260 10.4.3.4 Post-Synthetic Linker Exchange 261 10.4.3.5 Post-Synthetic Linkage Conversion 262 10.5 Summary 263 References 264 11 Nanoscopic and Macroscopic Structuring of Covalent Organic Frameworks 267 11.1 Introduction 267 11.2 Top-Down Approach 268 11.2.1 Sonication 268 11.2.2 Grinding 269 11.2.3 Chemical Exfoliation 269 11.3 Bottom-Up Approach 271 11.3.1 Mechanism of Crystallization of Boronate Ester COFs 271 11.3.1.1 Solution Growth on Substrates 273 11.3.1.2 Seeded Growth of Colloidal Nanocrystals 274 11.3.1.3 Thin Film Growth in Flow 276 11.3.1.4 Thin Film Formation by Vapor-Assisted Conversion 277 11.3.2 Mechanism of Imine COF Formation 277 11.3.2.1 Nanoparticles of Imine COFs 278 11.3.2.2 Thin Films of Imine COFs at the Liquid-Liquid Interface 280 11.4 Monolayer Formation of Boroxine and Imine COFs Under Ultrahigh Vacuum 281 11.5 Summary 281 References 282 Part III Applications of Metal-Organic Frameworks 285 12 The Applications of Reticular Framework Materials 287 References 288 13 The Basics of Gas Sorption and Separation in MOFs 295 13.1 Gas Adsorption 295 13.1.1 Excess and Total Uptake 295 13.1.2 Volumetric Versus Gravimetric Uptake 297 13.1.3 Working Capacity 297 13.1.4 System-Based Capacity 298 13.2 Gas Separation 299 13.2.1 Thermodynamic Separation 299 13.2.1.1 Calculation of Qst Using a Virial-Type Equation 300 13.2.1.2 Calculation of Qst Using the Langmuir-Freundlich Equation 300 13.2.2 Kinetic Separation 301 13.2.2.1 Diffusion Mechanisms 301 13.2.2.2 Influence of the Pore Shape 303 13.2.2.3 Separation by Size Exclusion 304 13.2.2.4 Separation Based on the Gate-Opening Effect 304 13.2.3 Selectivity 305 13.2.3.1 Calculation of the Selectivity from Single-Component Isotherms 306 13.2.3.2 Calculation of the Selectivity by Ideal Adsorbed Solution Theory 307 13.2.3.3 Experimental Methods 308 13.3 Stability of Porous Frameworks Under Application Conditions 309 13.4 Summary 310 References 310 14 CO2 Capture and Sequestration 313 14.1 Introduction 313 14.2 In Situ Characterization 315 14.2.1 X-ray and Neutron Diffraction 315 14.2.1.1 Characterization of Breathing MOFs 316 14.2.1.2 Characterization of Interactions with Lewis Bases 317 14.2.1.3 Characterization of Interactions with Open Metal Sites 317 14.2.2 Infrared Spectroscopy 318 14.2.3 Solid-State NMR Spectroscopy 320 14.3 MOFs for Post-combustion CO2 Capture 321 14.3.1 Influence of Open Metal Sites 321 14.3.2 Influence of Heteroatoms 322 14.3.2.1 Organic Diamines Appended to Open Metal Sites 322 14.3.2.2 Covalently Bound Amines 323 14.3.3 Interactions Originating from the SBU 323 14.3.4 Influence of Hydrophobicity 325 14.4 MOFs for Pre-combustion CO2 Capture 326 14.5 Regeneration and CO2 Release 327 14.5.1 Temperature Swing Adsorption 328 14.5.2 Vacuum and Pressure Swing Adsorption 328 14.6 Important MOFs for CO2 Capture 329 14.7 Summary 332 References 332 15 Hydrogen and Methane Storage in MOFs 339 15.1 Introduction 339 15.2 Hydrogen Storage in MOFs 340 15.2.1 Design of MOFs for Hydrogen Storage 341 15.2.1.1 Increasing the Accessible Surface Area 342 15.2.1.2 Increasing the Isosteric Heat of Adsorption 344 15.2.1.3 Use of Lightweight Elements 348 15.2.2 Important MOFs for Hydrogen Storage 349 15.3 Methane Storage in MOFs 349 15.3.1 Optimizing MOFs for Methane Storage 352 15.3.1.1 Optimization of the Pore Shape and Metrics 353 15.3.1.2 Introduction of Polar Adsorption Sites 357 15.3.2 Important MOFs for Methane Storage 359 15.4 Summary 359 References 359 16 Liquid- and Gas-Phase Separation in MOFs 365 16.1 Introduction 365 16.2 Separation of Hydrocarbons 366 16.2.1 C1-C5 Separation 367 16.2.2 Separation of Light Olefins and Paraffins 370 16.2.2.1 Thermodynamic Separation of Olefin/Paraffin Mixtures 371 16.2.2.2 Kinetic Separation of Olefin/Paraffin Mixtures 372 16.2.2.3 Separation of Olefin/Paraffin Mixtures Utilizing the Gate-Opening Effect 375 16.2.2.4 Separation of Olefin/Paraffin Mixtures by Molecular Sieving 375 16.2.3 Separation of Aromatic C8 Isomers 376 16.2.4 Mixed-Matrix Membranes 379 16.3 Separation in Liquids 382 16.3.1 Adsorption of Bioactive Molecules fromWater 382 16.3.1.1 Toxicity of MOFs 382 16.3.1.2 Selective Adsorption of Drug Molecules fromWater 383 16.3.1.3 Selective Adsorption of Biomolecules fromWater 385 16.3.2 Adsorptive Purification of Fuels 385 16.3.2.1 Aromatic N-Heterocyclic Compounds 385 16.3.2.2 Adsorptive Removal of Aromatic N-Heterocycles 385 16.4 Summary 386 References 387 17 Water Sorption Applications of MOFs 395 17.1 Introduction 395 17.2 Hydrolytic Stability of MOFs 395 17.2.1 Experimental Assessment of the Hydrolytic Stability 396 17.2.2 Degradation Mechanisms 396 17.2.3 Thermodynamic Stability 398 17.2.3.1 Strength of the Metal-Linker Bond 398 17.2.3.2 Reactivity of Metals TowardWater 399 17.2.4 Kinetic Inertness 400 17.2.4.1 Steric Shielding 401 17.2.4.2 Hydrophobicity 403 17.2.4.3 Electronic Configuration of the Metal Center 403 17.3 Water Adsorption in MOFs 404 17.3.1 Water Adsorption Isotherms 404 17.3.2 Mechanisms ofWater Adsorption in MOFs 405 17.3.2.1 Chemisorption on Open Metal Sites 405 17.3.2.2 Reversible Cluster Formation 407 17.3.2.3 Capillary Condensation 409 17.4 Tuning the Adsorption Properties of MOFs by Introduction of Functional Groups 411 17.5 Adsorption-Driven Heat Pumps 412 17.5.1 Working Principles of Adsorption-Driven Heat Pumps 412 17.5.2 Thermodynamics of Adsorption-Driven Heat Pumps 413 17.6 Water Harvesting from Air 415 17.6.1 Physical Background onWater Harvesting 416 17.6.2 Down-selection of MOFs forWater Harvesting 418 17.7 Design of MOFs with TailoredWater Adsorption Properties 420 17.7.1 Influence of the Linker Design 420 17.7.2 Influence of the SBU 420 17.7.3 Influence of the Pore Size and Dimensionality of the Pore System 421 17.7.4 Influence of Defects 421 17.8 Summary 422 References 423 Part IV Special Topics 429 18 Topology 431 18.1 Introduction 431 18.2 Graphs, Symmetry, and Topology 431 18.2.1 Graphs and Nets 431 18.2.2 Deconstruction of Crystal Structures into Their Underlying Nets 433 18.2.3 Embeddings of Net Topologies 435 18.2.4 The Influence of Local Symmetry 435 18.2.5 Vertex Symbols 436 18.2.6 Tilings and Face Symbols 437 18.3 Nomenclature 439 18.3.1 Augmented Nets 439 18.3.2 Binary Nets 440 18.3.3 Dual Nets 441 18.3.4 Interpenetrated/Catenated Nets 441 18.3.5 Cross-Linked Nets 442 18.3.6 Weaving and Interlocking Nets 443 18.4 The Reticular Chemistry Structure Resource (RCSR) Database 444 18.5 Important 3-Periodic Nets 445 18.6 Important 2-Periodic Nets 447 18.7 Important 0-Periodic Nets/Polyhedra 449 18.8 Summary 451 References 451 19 Metal-Organic Polyhedra and Covalent Organic Polyhedra 453 19.1 Introduction 453 19.2 General Considerations for the Design of MOPs and COPs 453 19.3 MOPs and COPs Based on the Tetrahedron 454 19.4 MOPs and COPs Based on the Octahedron 456 19.5 MOPs and COPs Based on Cubes and Heterocubes 457 19.6 MOPs Based on the Cuboctahedron 459 19.7 Summary 461 References 461 20 Zeolitic Imidazolate Frameworks 463 20.1 Introduction 463 20.2 Zeolitic Framework Structures 465 20.2.1 Zeolite-Like Metal-Organic Frameworks (Z-MOFs) 465 20.2.2 Zeolitic Imidazolate Frameworks (ZIFs) 467 20.3 Synthesis of ZIFs 468 20.4 Prominent ZIF Structures 469 20.5 Design of ZIFs 471 20.5.1 The Steric Index ? as a Design Tool 472 20.5.1.1 Principle I: Control over the Maximum Pore Opening 473 20.5.1.2 Principle II: Control over the Maximum Cage Size 473 20.5.1.3 Principle III: Control over the Structural Tunability 474 20.5.2 Functionalization of ZIFs 475 20.6 Summary 476 References 477 21 Dynamic Frameworks 481 21.1 Introduction 481 21.2 Flexibility in Synchronized Dynamics 482 21.2.1 Synchronized Global Dynamics 482 21.2.1.1 Breathing in MOFs Built from Rod SBUs 483 21.2.1.2 Breathing in MOFs Built from Discrete SBUs 484 21.2.1.3 Flexibility Through Distorted Organic Linkers 487 21.2.2 Synchronized Local Dynamics 487 21.3 Independent Dynamics in Frameworks 490 21.3.1 Independent Local Dynamics 490 21.3.2 Independent Global Dynamics 492 21.4 Summary 494 References 494 Index 497
זמן אספקה 21 ימי עסקים