‏1,029.00 ₪

Handbook of Software Solutions for ICME

‏1,029.00 ₪
ISBN13
9783527339020
יצא לאור ב
Weinheim
זמן אספקה
21 ימי עסקים
עמודים
632
פורמט
Hardback
תאריך יציאה לאור
9 בנוב׳ 2016
The first integrated book on simulation platforms and ICME types of operation, this well-structured and comprehensive directory of software tools guides readers along the value chain in the production of components, dealing with their entire roadmap and lifecycle.
As one of the results of an ambitious project, this handbook provides a well-structured directory of globally available software tools in the area of Integrated Computational Materials Engineering (ICME). The compilation covers models, software tools, and numerical methods allowing describing electronic, atomistic, and mesoscopic phenomena, which in their combination determine the microstructure and the properties of materials. It reaches out to simulations of component manufacture comprising primary shaping, forming, joining, coating, heat treatment, and machining processes. Models and tools addressing the in-service behavior like fatigue, corrosion, and eventually recycling complete the compilation. An introductory overview is provided for each of these different modelling areas highlighting the relevant phenomena and also discussing the current state for the different simulation approaches. A must-have for researchers, application engineers, and simulation software providers seeking a holistic overview about the current state of the art in a huge variety of modelling topics. This handbook equally serves as a reference manual for academic and commercial software developers and providers, for industrial users of simulation software, and for decision makers seeking to optimize their production by simulations. In view of its sound introductions into the different fields of materials physics, materials chemistry, materials engineering and materials processing it also serves as a tutorial for students in the emerging discipline of ICME, which requires a broad view on things and at least a basic education in adjacent fields.
מידע נוסף
עמודים 632
פורמט Hardback
ISBN10 3527339027
יצא לאור ב Weinheim
תאריך יציאה לאור 9 בנוב׳ 2016
תוכן עניינים List of Contributors XVII Preface XXVII 1 Introduction 1 Georg J. Schmitz and Ulrich Prahl 1.1 Motivation 1 1.2 What is ICME? 2 1.3 Industrial Needs for ICME 4 1.4 Present ICME 9 1.5 Scope of this Book 11 1.6 Structure of the Book 13 References 17 2 Modeling at the Process and Component Scales 19 2.1 Overview of Processing Methods and Process Chains 21 Ralph Bernhardt and Georg J. Schmitz 2.1.1 History of Metalworking 22 2.1.2 History of Modeling of Manufacturing Processes 23 2.1.3 Overview of Processing Methods 25 2.1.4 Processes and Process Chains 26 2.1.5 Benefits of Modeling Process Chains 27 2.1.6 Available Modeling Tools at Component Scale 29 References 30 Appendix 32 2.2 Primary Shaping Processes 35 Christoph Broeckmann, Christian Hopmann, Georg J. Schmitz, Sree Koundinya Sistla, Marcel Spekowius, Roberto Spina, and Chung Van Nguyen 2.2.1 Overview 35 2.2.1.1 Solidification and Crystal Growth 36 2.2.2 Casting 36 2.2.3 Plastics Processing 38 2.2.4 Sintering 41 2.2.5 Additive Manufacturing 44 2.2.6 Typical Applications of Simulations in Primary Shaping Processes 44 2.2.6.1 Casting 44 2.2.6.2 Plastics Processing 45 2.2.6.3 Sintering 46 2.2.7 Phenomena to be Modeled 48 2.2.7.1 Casting/Crystal Growth 48 2.2.7.2 Plastics Processing 50 2.2.7.3 Sintering 50 2.2.8 Basic Equations to be Solved 51 2.2.8.1 Casting/Plastics Processing 51 2.2.8.2 Sintering 52 2.2.9 Initial and Boundary Conditions 54 2.2.9.1 Casting 54 2.2.9.2 Plastics Processing 54 2.2.9.3 Sintering 55 2.2.10 Required Data and their Origin 55 2.2.10.1 Casting 55 2.2.10.2 Sintering 56 2.2.10.3 Plastics Processing 57 2.2.11 Simulation Codes in the Area of Primary Shaping 58 References 78 Further Reading 79 2.3 Forming Processes 81 Stephan Hojda and Markus Bambach 2.3.1 Overview: Manufacturing Process Forming 81 2.3.2 Phenomena Occurring during Forming Processes 81 2.3.2.1 Finite Strain Deformation 83 2.3.2.2 Strain Hardening 83 2.3.2.3 Contact 84 2.3.2.4 Friction 84 2.3.2.5 Instability and Damage 84 2.3.2.6 Heat Transfer 84 2.3.3 Modeling and Simulation Methods 85 2.3.4 Typical Applications of Forming Simulations 86 2.3.5 Initial and Boundary Conditions 87 2.3.6 Required Data and their Origin 88 2.3.7 Numerical Aspects 90 2.3.8 Software Codes 91 References 93 2.4 Heat Treatment 97 Martin Hunkel 2.4.1 Introduction into Heat Treatment 97 2.4.2 Heat Transfer in and out of a Part 98 2.4.2.1 Thermal Conduction 98 2.4.2.2 Heat Transfer 99 2.4.2.3 Thermal Radiation 99 2.4.2.4 Convective Heat Transfer 100 2.4.2.5 Cooling in Vaporizing Liquids 100 2.4.2.6 Solid Solid Heat Transfer 101 2.4.2.7 Electromagnetic Heating 101 2.4.3 Microstructure 101 2.4.3.1 Phase Transformations and Precipitations 102 2.4.3.2 Recrystallization and Grain Growth 103 2.4.4 Mechanical Behavior during Heat Treatment 104 2.4.4.1 Thermal and Transformation Strain 104 2.4.4.2 Transformation Plasticity 104 2.4.5 Thermochemical Treatment 105 2.4.5.1 Carburizing and Carbonitriding 106 2.4.5.2 Nitriding and Nitrocarburizing 106 2.4.6 Heat Treatment Simulation 107 2.4.6.1 Specific Remarks on Heat Treatment Simulations 107 2.4.6.2 Specialized Software 108 References 109 2.5 Joining Processes 111 Ulrike Beyer, Gerson Meschut, Stephan Horstmann, and Ralph Bernhardt 2.5.1 Introduction 111 2.5.2 Basics and Definitions 112 2.5.2.1 Definition 112 2.5.2.2 Joint 112 2.5.2.3 Process 113 2.5.2.4 Joining Simulation 114 2.5.3 Welding 115 2.5.3.1 Products and Industries 115 2.5.3.2 Technical Solution Based on Structural Welding Simulation 117 2.5.4 Joining by Forming 120 2.5.4.1 Technological Overview 120 2.5.4.2 Virtual Joining Factory 124 2.5.5 Software for Joining Processes 128 References 133 2.6 Thick Coating Formation Processes 135 Kirsten Bobzin, Mehmet Ote, Thomas Frederik Linke, and Ilkin Alkhasli 2.6.1 Overview 135 2.6.2 Typical Applications of Coating Simulations 136 2.6.3 Phenomena Occurring During Coating Formation 137 2.6.4 Basic Equations to Model the Phenomena 139 2.6.5 Initial and Boundary Conditions 140 2.6.6 Process Modeling on the Example of Thermal Spraying 140 2.6.6.1 Heat Generation in Combustion Chamber/Plasma Generator 141 2.6.6.2 Free Jet and Particle Jet 143 2.6.6.3 Particle Impact and Coating Growth on the Substrate 145 2.6.6.4 Homogenization Methods Based on Finite Elements 145 2.6.6.5 Modeling and Simulation of In-Service Coating Behavior 147 2.6.6.6 Validation of Results 147 2.6.7 Conclusion 150 2.6.8 Software Tools 151 References 153 2.7 Thin-Film Deposition Processes 157 Andreas Pflug, Michael Siemers, ThomasMelzig, Martin Keunecke, Lothar Schafer, and Gunter Brauer 2.7.1 Introduction 157 2.7.2 Overview ofThin-Film Deposition Methods 159 2.7.3 Modeling of Thin-Film Deposition as a Multiscale Problem 165 2.7.4 Software Codes 172 References 186 2.8 Machining 19 Andre Teixeira, Markus Kromer, and Roland Muller 2.8.1 Introduction to Machining Processes 191 2.8.2 General Aspects of Machining Simulations 196 2.8.2.1 Analytic Geometric Simulation Models 196 2.8.2.2 Finite Element Method Simulation Models 198 2.8.3 Combination of Analytic Geometric Simulation Models and FEM Simulation Models 200 2.8.4 Simulation of Surface Integrity Modifications 201 2.8.5 Summary 204 2.8.6 Simulation Tools for Machining Processes 204 References 207 2.9 Fatigue Modeling: From Microstructure to Component Scale 209 Mohamed Sharaf and Sebastian Munstermann 2.9.1 Influence Factors on Component Fatigue Limit 209 2.9.2 Micromechanics as a Modeling Approach 211 2.9.3 Numerical Representation of Microstructure 212 2.9.4 Cyclic Elastoplasticity of Crystals and Microsubstructures 213 2.9.5 The Notion of Fatigue Indicator Parameters (FIPs) 216 2.9.6 Fatigue Limit as a Function of Microstructure 218 2.9.7 Software Tools for Modeling Fatigue 223 References 223 2.10 Corrosion and Its Context in Service Life 227 Daniela Zander, Daniel Hoche, Johan Deconinck, and Theo Hack 2.10.1 Overview 227 2.10.2 Corrosion Modeling and Applications 229 2.10.2.1 Phenomena Occurring during Service Life 230 2.10.2.2 Multidisciplinarity 234 2.10.2.3 Mathematical Aspects (Basic Equations) of Corrosion Modeling 234 2.10.2.4 Model Input Data and Their Origin 237 2.10.3 Industrial Demands in ICME-Related Corrosion Modeling 238 2.10.4 Software Tool-Related Corrosion Modeling 240 2.10.5 Future Tasks and Limits 244 2.10.6 Acknowledgments 244 References 244 2.11 Recycling Processes 247 Klaus Hack, Markus A. Reuter, Stephan Petersen, and Sander Arnout 2.11.1 Overview 247 2.11.2 Materials-Centric versus Product-Centric Approach 248 2.11.3 General Phenomena: LED Lamp Recycling as an Example 249 2.11.4 Methods Available 251 2.11.5 Thermochemical Aspects of Recycling 252 2.11.6 Recycling of Aluminum 255 2.11.7 Recycling of Zinc: Fuming 258 2.11.8 Valorization of Wastes 262 2.11.9 Summary of Simulation Tools 265 References 266 3 MicrostructureModeling 269 Markus Apel, Robert Spatschek, Franz Roters, Henrik Larsson, Charles-Andre Gandin, Gildas Guillemot, Frigyes Podmaniczky, Laszlo Granasy, Georg J. Schmitz, and Qing Chen 3.1 Overview and Definitions 269 3.1.1 What is a Microstructure and why it is Important? 269 3.2 How to Describe and Store a Microstructure? 271 3.2.1 Digital Microstructures 273 3.3 Phenomena Affecting Microstructure Evolution 273 3.4 Basic Equations/Models 275 3.5 Models for Microstructure Evolution 276 3.5.1 Overview 276 3.5.2 Example for Integral Models 276 3.5.3 Nucleation Models 279 3.5.3.1 Classical Approach to Nucleation 279 3.5.3.2 Free Growth-Limited Model 280 3.5.3.3 Molecular Dynamics (MD) Simulations 281 3.5.3.4 Phase-Field Theory and Simulations 282 3.5.3.5 Density Functional Theory and Phase-Field Crystal Modeling 283 3.5.3.6 Incorporating Nucleation into Simulations 284 3.5.4 Diffusion Models 286 3.5.4.1 Single-Phase Diffusion Problems 286 3.5.4.2 Moving Phase Boundary Simulations under Local Equilibrium Conditions 287 3.5.4.3 1D Multiphase Simulations 289 3.5.5 Precipitation Models 289 3.5.6 Cellular Automaton Models 292 3.5.7 Monte Carlo Potts Models 295 3.5.8 Phase-Field and Multiphase-Field Models 296 3.5.9 Phase-Field Crystal Models 300 3.5.10 Crystal Plasticity 304 3.5.10.1 Fundamentals 304 3.5.10.2 Texture Simulation 306 3.5.10.3 Constitutive Modeling (CP-FEM/CP-FFT) 307 3.6 Software Tools 308 References 321 Further Reading 322 4 Thermodynamics 325 Tore Haug-Warberg, Long-Qing Chen, Ursula Kattner, Bengt Hallstedt, Andre Costa e Silva, Joonho Lee, Jean-Marc Joubert, Jean-Claude Crivello,Fan Zhang, Bethany Huseby, and Olle Blomberg 4.1 Overview 325 4.2 Basic Concepts and Principles 326 4.2.1 The Concept of theThermodynamic State 326 4.2.2 Fundamental Relations and Canonical State Variables 327 4.2.3 Equations of State (EOS) 330 4.2.3.1 Perfect Gas 331 4.2.3.2 Harmonic Oscillator 331 4.2.3.3 Vibrations in Crystals 331 4.2.3.4 Virial Expansion of Gases 332 4.2.3.5 Van derWaals Fluid 332 4.2.4 Euler Integration of EOS into a Fundamental Relation 332 4.2.5 The Principle ofThermodynamic Equilibrium 333 4.3 Thermodynamic Modeling 335 4.3.1 Gibbs and Helmholtz Energy Residuals 336 4.3.2 Excess Gibbs Energy 337 4.4 The CALPHAD Approach 340 4.4.1 History 341 4.4.2 Crystallography and Models of Phases 342 4.4.3 Models of Composition Dependence 345 4.4.3.1 Ionic Sublattice Model 345 4.4.3.2 Associate Model 346 4.4.3.3 Modified Quasichemical Model 346 4.4.4 Model of Nanosize Effect 346 4.4.5 CALPHAD Databases 348 4.4.6 Database Development and Parameter Optimization 350 4.4.7 Phase Names 353 4.4.8 Reference States 356 4.4.9 Database Formats 356 4.4.10 Extensions 360 4.4.11 Limitations and Challenges 363 4.5 Deriving Thermodynamics from Ab Initio Calculations 364 4.5.1 DFT Methodology 365 4.5.2 Heat of Formation 366 4.5.3 Mixing Enthalpy 367 4.5.4 Lattice Vibrations 368 4.6 Use of Thermodynamics at Larger Scales 370 4.7 Applications and Success Stories 373 4.8 Software Tools 378 References 381 Further Reading 383 5 Discrete Models: Down to Atoms and Electrons 385 Seyed Masood Hafez Haghighat, Ignacio Martin-Bragado, Claudio M.Lousada, and Pavel A. Korzhavyi 5.1 Overview and Definitions 385 5.2 Discrete and Semidiscrete Mesoscopic Models in Materials Science 386 5.2.1 Discrete Dislocation Dynamics 386 5.2.1.1 Types of the DDD Techniques 387 5.2.1.2 DDD Methodology 387 5.2.1.3 Boundary Conditions 389 5.2.1.4 Simulation Inputs 389 5.2.1.5 Applications of the DDD Technique 389 5.2.1.6 Drawbacks of the DDD Technique 390 5.2.2 Monte Carlo Method 391 5.2.2.1 Types of the MC Method 391 5.2.2.2 Methodology of Potts Model 392 5.2.2.3 Time Conversion 393 5.2.2.4 Modeling Inputs 393 5.2.2.5 Applications of the MC 393 5.3 Atomistic Simulations: Models and Methods 394 5.3.1 Kinetic Monte Carlo 394 5.3.1.1 Introduction 394 5.3.1.2 The KMC Algorithm 394 5.3.1.3 KMC Drawbacks 395 5.3.1.4 KMC Applications 395 5.3.2 Molecular Dynamics 398 5.3.2.1 Introduction 398 5.3.2.2 Equations of Motion 398 5.3.2.3 Integration Schemes 398 5.3.2.4 Potential 399 5.3.2.5 Boundary Conditions 400 5.4 Electronic StructureMethods 401 5.4.1 Approximate Solutions to the ElectronicWave Function 403 5.4.1.1 Hartree FockTheory 404 5.4.1.2 Post-Hartree Fock Methods 405 5.4.2 Density Functional Theory (DFT) 407 5.4.2.1 Local Density Approximation (LDA) 408 5.4.2.2 Generalized Gradient Approximation (GGA) 409 5.4.2.3 Meta-GGA Methods 409 5.4.2.4 Hybrid DFT Hartree Fock 410 5.4.2.5 Van derWaals Corrected DFT 410 5.5 Potentials, Force Fields, and Effective Cluster Interactions 411 5.6 Software Tools in the Area of Discrete Modeling 412 Further Reading 430 6 Effective Properties 433 Ludovic Noels, LingWu, Laurent Adam, Jan Seyfarth, Ganesh Soni, Javier Segurado, Gottfried Laschet, Geng Chen, Maxime Lesueur, Mauricio Lobos, Thomas Bohlke, Thomas Reiter, Stefan Oberpeilsteiner, Dietmar Salaberger, DieterWeichert, and Christoph Broeckmann 6.1 Computational Homogenization Methods and Codes: An Overview 433 6.1.1 Review of Homogenization Methods for Heterogeneous Materials 433 6.1.2 Homogenization in Industrial Application: Current State of the Art 442 6.1.2.1 Homogenization Technology 442 6.1.2.2 Parameterization of Material Models 443 6.1.2.3 ICME Strategy 444 6.1.2.4 Material Engineering 445 6.1.2.5 Structural Engineering 446 6.2 Finite Element-Based Homogenization 447 6.2.1 Effective Properties of Polycrystalline Materials 447 6.2.1.1 Computational Polycrystalline Homogenization 448 6.2.2 Variation of the Effective Elastic Properties During Phase Transformation of a Low-Carbon Steel, Simulated by the Phase-Field Method 449 6.2.2.1 Phase-Field Simulation of the Austenite Ferrite Phase Transformation in a Fe C Mn Steel 449 6.2.2.2 EffectiveThermoelastic Properties of the Fe C Mn Si Steel Microstructures 450 6.2.3 A Direct Method-Based Statistical Prediction of the Effective Strengths of Particulate-Reinforced Metal Matrix Composite 452 6.2.4 Effective Elastic Properties of Semicrystalline Thermoplastic Microstructures of Injection-Molded Parts 454 6.2.4.1 Homogenization of the Lamellae at the Nanoscale 455 6.2.4.2 Effective Elastic Properties of an Injection-Molded 2mm PP Plate 455 6.2.5 On the Effective Mechanical Properties of Discontinuous Fiber Composites (DFC): Application to a Ribbed Beam 456 6.2.5.1 Determination of the Distribution of Fibers Orientation 457 6.2.5.2 Computation of the Homogenized Mechanical Properties 457 6.2.5.3 Analysis of the Curing Cycle 458 6.2.5.4 Analysis of the In-Service Mechanical Behavior 458 6.2.5.5 Outcome 458 6.3 Mean-Field Homogenization 459 6.3.1 Fiber-Reinforced Overmolded Composite Parts: An Industrial Application Example 459 6.3.1.1 Integrated Material Modeling of Polymer-Reinforced Composites 459 6.3.1.2 Conclusions 462 6.4 Screening and Virtual Testing of Material Properties 462 6.4.1 Material Screening and Design Based on nth-Order Bounds 462 6.4.1.1 nth-Order Bounds of Linear Anisotropic Elastic Properties 462 6.4.1.2 Zeroth-, First- and Second-Order Bounds of Linear Elastic Properties of Cubic Materials 463 6.4.1.3 Application Example of Bounds for Material Screening and Design 464 6.4.2 Comparison of In Situ/XCT Measurements with Virtual Testing of SFRP Materials 465 6.4.2.1 Methods 467 6.4.2.2 Results 467 6.5 Software Tools for the Determination of Effective Properties 468 6.5.1 Software Categories 468 6.5.2 List of Software 468 References 476 7 Numerical Methods 487 Carlos Agelet de Saracibar, Romain Boman, Philippe Bussetta, Juan Carlos Cajas, Miguel Cervera,Michele Chiumenti, Abel Coll, Pooyan Dadvand, Joaquin A. Hernandez Ortega, Guillaume Houzeaux,Miguel Angel Pasenau de Riera, and Jean-Philippe Ponthot 7.1 Overview 487 7.2 Preprocess and Space Discretization Methods 488 7.2.1 Preprocess 488 7.2.2 Space Discretization Methods 489 7.2.2.1 Structured and Semi-structured Meshing Algorithms 489 7.2.2.2 Advancing Front 489 7.2.2.3 Delaunay 490 7.2.2.4 Space Decomposition Techniques 490 7.3 Numerical Methods for Engineering Problems 491 7.3.1 Kinematic Frameworks 491 7.3.2 Computational Strategies for Coupled Problems 492 7.3.3 Numerical Methods for PDE 493 7.3.4 Numerical Methods for Contact Problems 497 7.4 Postprocess and Visualization Methods 499 7.4.1 Postprocess 499 7.4.2 Visualization Methods 500 7.5 Mapping and Data Transfer Methods 501 7.5.1 Element Interpolation Methods 502 7.5.2 Interpolation from Clouds of Points 503 7.5.3 Projection using Mortar Elements 503 7.5.4 Projection using Discontinuous Reconstructions 504 7.5.5 Particular Case of ALE Remapping 504 7.6 Reduced-Order Multiscale Models 505 7.6.1 Introduction 505 7.6.1.1 Simplifications in Hierarchical Multiscale Models 505 7.6.1.2 Physical Insight-Based Simplifications 507 7.6.1.3 Computer-Based Simplifications 507 7.6.2 Problem Statement 508 7.6.3 Small-Scale ROM (Bar Equilibrium) 508 7.6.4 Large-Scale ROM (Truss Equilibrium) 509 7.6.4.1 Acknowledgments 511 7.7 HPC and Parallelization Methods 511 7.7.1 Introduction 511 7.7.2 Substructuring 512 7.7.3 Algebraic Solvers 514 7.7.4 Efficiency 516 7.7.5 The Challenges 516 7.8 Software Codes 517 References 526 8 Platforms for ICME 533 Adham Hashibon, Onder Babur, Mauricio Hanzich, Guillaume Houzeaux, and Bo!rek Patzak 8.1 Introduction 533 8.2 Integration Approaches 534 8.2.1 A Categorization of Software to be Integrated 536 8.2.2 Object-Oriented Approaches 536 8.2.3 Component-Based Approaches 537 8.2.4 Service-Oriented Approaches 538 8.2.5 Data-Centric Approaches 539 8.2.6 Model-Based Approaches 539 8.2.7 Ontology-Based Approaches 540 8.2.8 Existing Standards for Integration 540 8.2.9 Coupling and Linking Approaches 541 8.3 High-Performance and Distributed Computing 543 8.3.1 HPC Hardware 544 8.3.2 HPC Programming Models 546 8.3.3 On Major HPC/Distributed Computing Architectures 548 8.3.4 Fault Tolerance 549 8.4 Overview of Existing Platform Solutions 551 References 558 9 Future Directions 565 Ulrich Prahl and Georg J. Schmitz 9.1 Lessons Learned 565 9.2 Interoperability and Communication Standards 567 9.3 Hierarchical Description of a Material 569 9.3.1 What Is a Material? 569 9.4 Metadata 572 9.5 Metadata Schemata 573 9.6 Platforms: Orchestration of Simulation Tools 575 9.7 Databases: Storage and Retrieval of Information 576 9.8 Sustainability 578 9.9 Outlook 579 References 580 Index 583
זמן אספקה 21 ימי עסקים