‏694.00 ₪

Optical Engineering Science

‏694.00 ₪
ISBN13
9781119302803
יצא לאור ב
Hoboken
זמן אספקה
21 ימי עסקים
עמודים
664
פורמט
Hardback
תאריך יציאה לאור
17 בינו׳ 2020
A practical guide for engineers and students that covers a wide range of optical design and optical metrology topics Optical Engineering Science offers a comprehensive and authoritative review of the science of optical engineering. The book bridges the gap between the basic theoretical principles of classical optics and the practical application of optics in the commercial world. Written by a noted expert in the field, the book examines a range of practical topics that are related to optical design, optical metrology and manufacturing. The book fills a void in the literature by coving all three topics in a single volume. Optical engineering science is at the foundation of the design of commercial optical systems, such as mobile phone cameras and digital cameras as well as highly sophisticated instruments for commercial and research applications. It spans the design, manufacture and testing of space or aerospace instrumentation to the optical sensor technology for environmental monitoring. Optics engineering science has a wide variety of applications, both commercial and research. This important book: Offers a comprehensive review of the topic of optical engineering Covers topics such as optical fibers, waveguides, aspheric surfaces, Zernike polynomials, polarisation, birefringence and more Targets engineering professionals and students Filled with illustrative examples and mathematical equations Written for professional practitioners, optical engineers, optical designers, optical systems engineers and students, Optical Engineering Science offers an authoritative guide that covers the broad range of optical design and optical metrology topics and their applications.
מידע נוסף
עמודים 664
פורמט Hardback
ISBN10 1119302803
יצא לאור ב Hoboken
תאריך יציאה לאור 17 בינו׳ 2020
תוכן עניינים Chapter 1: Geometrical Optics 1.1 Geometrical Optics - Ray and Wave Optics 1 1.2 Fermat's Principle and the Eikonal Equation 2 1.3 Sequential Geometrical Optics - A Generalised Description 3 1.3.1 Conjugate Points and Perfect Image Formation 4 1.3.2 Infinite Conjugate and Focal Points 4 1.3.3 Principal Points and Planes 5 1.3.4 System Focal Lengths 6 1.3.5 Generalised Ray Tracing 6 1.3.6 Angular Magnification and Nodal Points 7 1.3.7 Cardinal Points 8 1.3.8 Object and Image Locations - Newton's Equation 8 1.3.9 Conditions for perfect image formation - Helmholtz Equation 9 1.4: Behaviour of Simple Optical Components and Surfaces 10 1.4.1: General 10 1.4.2: Refraction at a Plane Surface and Snell's Law 10 1.4.3 Refraction at a Curved (Spherical) Surface 11 1.4.4 Refraction at Two Spherical Surfaces (Lenses) 13 1.4.5 Reflection by a Plane Surface. 14 1.4.6: Reflection from a Curved (Spherical) Surface 15 1.5: Paraxial Approximation and Gaussian Optics 16 1.6 Matrix Ray Tracing 17 1.6.1: General 17 1.6.2 Determination of Cardinal Points 19 1.6.3: Worked Examples 20 1.6.4: Spreadsheet Analysis 23 Problems 23 Further reading 25 Chapter 2: Apertures Stops & Simple Instruments 1 2.1: Function of Apertures and Stops 1 2.2: Aperture Stops, Chief and Marginal Rays 1 2.3: Entrance Pupil and Exit Pupil 3 Worked Example - Cooke Triplet 3 2.4: Telecentricity 5 2.5 Vignetting 6 2.6: Field Stops and Other Stops 7 2.7: Tangential and Sagittal Ray Fans 7 2.8 Two Dimensional Ray Fans and Anamorphic Optics 7 2.9 Optical Invariant and Lagrange Invariant 9 2.10 Eccentricity Variable 10 2.11 Image Formation in Simple Optical Systems 10 2.11.1 Magnifying Glass or Eye Loupe 10 2.11.2 The Compound Microscope 11 2.11.3 Simple Telescope 13 2.11.4 Camera 14 Problems 16 Further reading 17 Chapter 3: Monochromatic Aberrations 3.1 Introduction 1 3.2 Breakdown of the Paraxial Approximation & Third Order Aberrations 2 3.3 Aberration and Optical Path Difference 6 3.4 General Third Order Aberration Theory 11 3.5 Gauss Seidel Aberrations 12 3.5.1 Introduction 12 3.5.2 Spherical Aberration 12 3.5.3 Coma 13 3.5.4 Field Curvature 16 3.5.5 Astigmatism 18 3.5.6 Distortion 19 Worked Example 20 3.6 Summary of Third Order Aberrations 21 3.6.1 OPD Dependence 21 3.6.2 Transverse Aberration Dependence 22 3.6.3. General Representation of Aberration and Seidel Coefficients 22 Problem Further reading 23 Chapter 4: Aberration Theory and Chromatic Aberration 1 4.1 General Points 1 4.2 Aberration Due to a Single Refractive Surface 1 4.2.1 Aplanatic Points 3 Worked Example 4.1: Microscope Objective 4 4.2.2 Astigmatism and Field Curvature 5 4.3 Reflection from a Spherical Mirror 7 4.4 Refraction Due to Optical Components 10 4.4.1 Flat Plate 10 Worked Example - Microscope Cover Slip 11 4.4.2 Aberrations of a Thin Lens 12 4.4.2.1 Conjugate Parameter and Lens Shape Parameter 13 4.4.2.2 General Formulae for Aberration of Thin Lenses 14 4.4.2.3 Aberration Behaviour of a Thin Lens at Infinite Conjugate 16 Worked Example 4.2: Best Form Singlet 19 4.4.2.3 Aplanatic Points for a Thin Lens 20 Worked Example 4.3: Microscope Objective - Hyperhemisphere plus Meniscus Lens 21 4.5 The Effect of Pupil Position on Element Aberration 23 4.6 ABBE SINE Condition 26 4.7 Chromatic Aberration 28 4.7.1 Chromatic Aberration and Optical Materials 28 4.7.2 Impact of Chromatic Aberration 30 Worked Example - Lateral Chromatic Aberration and the Huygens Eyepiece 31 4.7.3 The Abbe Diagram for Glass Materials 32 4.7.4 The Achromatic Doublet 33 Worked Example: Simple Achromatic Doublet 34 4.7.5 Optimisation of an Achromatic Doublet (Infinite Conjugate) 35 Worked Example - Detailed design of 200 mm focal length achromatic doublet. 35 4.7.6 Secondary Colour 37 4.7.8 Spherochromatism 39 4.8 Hierarchy of Aberrations 39 Problems Further reading 42 Chapter 5: Aspheric Surfaces and Zernike Polynomials 5.1: Introduction 1 5.2 Aspheric Surfaces 1 5.2.1 General Form of Aspheric Surfaces 1 5.2.2 Attributes of Conic Mirrors 2 Worked Example -Simple Mirror Based Magnifier 3 5.2.3 Conic Refracting Surfaces 4 5.2.4 Optical Design Using Aspheric Surfaces 5 5.3: Zernike Polynomials 6 5.3.1: Introduction 6 5.3.2 Form of Zernike Polynomials 8 5.3.3 Zernike Polynomials and Aberration 11 Worked Example 13 5.3.3 General Representation of Wavefront Error 14 5.3.4 Other Zernike Numbering Conventions 15 Problem Further reading 17 Chapter 6: Diffraction, Physical Optics and Image Quality 6.1 Introduction 1 6.2 The Eikonal Equation 2 6.3 Huygens Wavelets and the Diffraction Formulae 3 6.4 Diffraction in the Fraunhofer Approximation 5 6.5 Diffraction in an Optical System - The Airy Disc 6 Worked Example: Microscope Objective 10 6.6 The Impact of Aberration on System Resolution 10 6.6.1 The Strehl Ratio 10 6.6.2 The Marechal Criterion 11 Worked Example 12 6.6.3 The Huygens Point Spread Function 13 6.7 Laser Beam Propagation 13 6.7.1 Far Field Diffraction of a Gaussian Laser Beam 13 Worked Example - Beam Divergence of a Fibre Laser 14 6.7.2 Gaussian Beam Propagation 15 Worked Example - Rayleigh Distance of Fibre Laser 17 6.7.3 Manipulation of a Gaussian beam 17 Worked example - Gaussian Beam Manipulation 18 6.7.4 Diffraction and Beam Quality 18 6.7.5 Hermite Gaussian Beams 19 6.7.6 Bessel Beams 21 6.8 Fresnel Diffraction 21 6.9 Diffraction and Image Quality 24 6.9.1 Introduction 24 6.9.2 Geometric Spot Size 25 6.9.3 Diffraction and Image Quality 26 6.9.4 Modulation Transfer Function 27 Worked Example 29 6.9.5 Other Imaging Tests 29 Problems Further reading 31 Chapter 7: Radiometry and Photometry 7.1 Introduction 1 7.2 Radiometry 1 7.2.1 Radiometric Units 1 7.2.2 Significance of Radiometric Units 2 7.2.3 Ideal or Lambertian Scattering 3 7.2.4 Spectral Radiometric Units 4 7.2.5 Blackbody Radiation 5 7.2.6 Etendue 6 Worked Example: Flux Calculation 8 7.3 Scattering of Light from Rough Surfaces 8 7.5 Scattering of Light from Smooth Surfaces 10 Worked Example 13 7.6 Radiometry and Object Field Illumination 13 7.6.1 Koehler illumination 13 7.6.2 Use of Diffusers 14 7.6.3 The Integrating Sphere 15 7.6.3.1 Uniform Illumination 15 7.6.3.2 Integrating Sphere Measurements 17 7.6.4 Natural Vignetting 17 7.7 Radiometric Measurements 18 7.7.1 Introduction 18 7.7.2 Radiometric Calibration 18 7.7.2.1 Substitution Radiometry 18 7.7.2.2 Reference Sources 19 7.7.2.3 Other Calibration Standards 21 7.8 Photometry 21 7.8.1 Introduction 21 7.8.2 Photometric Units 21 7.8.3 Illumination Levels 22 7.8.4 Colour 24 7.8.4.1 Tristimulus Values 24 7.8.4.2 RGB Colour 25 7.8.5 Astronomical Photometry 26 Problems Further reading 29 Chapter 8: Polarisation and Birefringence 8.1: Introduction 1 8.2 Polarisation 1 8.2.1 Plane Polarised Waves 1 8.2.3 Circularly and Elliptically Polarised Light 3 8.2.4 Jones Vector Representation of Polarisation 4 8.2.5 Stokes Vector Representation of Polarisation 5 Worked Example 6 8.2.6 Polarisation and Reflection 7 Worked Example 9 8.2.7 Directional Flux - Poynting Vector 10 8.3 Birefringence 11 8.3.1 Introduction 11 8.3.2 The Index Ellipsoid 13 Worked Example 14 8.3.3 Propagation of Light in a Uniaxial Crystal - Double Refraction 15 Worked Example: Double Refraction in Calcite 16 8.3.4 'Walk-off' in Birefringent Crystals 17 Worked Example - Walk Off Angle 19 8.3.5 Uniaxial Materials 19 8.3.6 Biaxial Crystals 19 8.4 Polarisation Devices 20 8.4.1 Waveplates 20 8.4.2 Polarising Crystals 21 8.4.3 Polarising Beamsplitter 23 8.4.4 Wire Grid Polariser 23 8.4.5 Dichroitic Materials 24 8.4.6 The Faraday Effect and Polarisation Rotation 24 8.5 Analysis of Polarisation Components 25 8.5.1 Jones Matrices 25 Worked Example: Twisted Nematic Liquid Crystal 27 8.5.2 Muller Matrices 28 8.6 Stress Induced Birefringence 29 Problems Further reading 32 Chapter 9: Optical Materials 9.1 Introduction 1 9.2 Refractive Properties of Optical Materials 2 9.2.1 Transmissive Materials 2 9.2.1.1 Modelling Dispersion 2 Worked Example: Abbe Number of SCHOTT BK7 (R) 4 9.2.1.2 Temperature Dependence of Refractive Index 5 9.2.1.3 Temperature Coefficient of Refraction for Air 7 9.2.2 Behaviour of Reflective Materials 8 Worked Example: Reflectivity of Aluminium 10 9.2.3 Semiconductor Materials 12 9.3 Transmission Characteristics of Materials 14 9.3.1 General 14 9.3.2 Glasses 14 9.3.3 Crystalline Materials 15 9.3.4 Chalcogenide Glasses 16 9.3.5 Semiconductor Materials 17 9.3.6 Polymer Materials 18 9.3.7 Overall Transmission Windows for Common Optical Materials 18 9.4 Thermomechanical Properties 18 9.4.1 Thermal Expansion 18 9.4.2 Dimensional Stability under Thermal Loading 19 9.4.3 Annealing 19 9.4.4 Material Strength and Fracture Mechanics 20 Worked Example: Achromatic Doublet 22 9.5 Material Quality 22 9.5.1 General 22 9.5.2 Refractive Index Homogeneity 22 9.5.3 Striae 23 9.5.4 Bubbles and Inclusions 23 9.5.5 Stress Induced Birefringence 23 9.6 Exposure to Environmental Attack 23 9.6.1 Climatic Resistance 23 9.6.2 Stain Resistance 23 9.6.3 Resistance to Acid and Alkali Attack 24 9.7 Material Processing 24 Problem Further reading 25 Chapter 10: Coatings and Filters 10.1 Introduction 1 10.2 Properties of Thin Films 1 10.2.1 Analysis of Thin Film Reflection 1 10.2.2 Single Layer Antireflection Coatings 3 Worked Example: Single Layer Antireflection Coating 3 10.2.3 Multilayer Coatings 5 10.2.4 Thin Metal Films 7 10.2.5 Protected and Enhanced Metal Films 9 10.3 Filters 11 10.3.1 General 11 10.3.2 Antireflection Coatings 11 10.3.3 Edge Filters 12 10.3.4 Bandpass Filters 15 10.3.5 Neutral Density Filters 17 10.3.6 Polarisation Filters 18 Worked Example - Polarising Beamsplitter 19 10.3.7 Beamsplitters 20 10.3.8 Dichroic Filters 20 10.3.9 Etalon Filters 21 Worked Example: Etalon Filter 23 10.4 Design of Thin Film Filters 24 10.5 Thin Film Materials 27 10.6 Thin Film Deposition Processes 27 10.6.1 General 27 10.6.2 Evaporation 27 10.6.3 Sputtering 28 10.6.4 Thickness Monitoring 29 Problem Further reading 30 Chapter 11: Prisms and Dispersion Devices 11.1 Introduction 1 11.2 Prisms 1 11.2.1 Dispersive Prisms 1 Worked Example 4 11.2.2 Reflective Prisms 4 11.3 Analysis of Diffraction Gratings 8 11.3.1 Introduction 8 11.3.2 Principle of Operation 8 Worked Example - Diffraction Grating 10 11.3.3 Dispersion and Resolving Power 10 Worked Example - Diffraction Grating Resolving Power 11 11.3.4 Efficiency of a Transmission Grating 12 11.3.5 Phase Gratings 12 11.3.6 Impact of Varying Angle of Incidence 14 Worked Example - Transmission Grating with Non-Zero Incidence Angle 14 11.3.7 Reflection Gratings 15 Worked Example: Blazed Grating 18 11.3.8 Impact of Polarisation 19 11.3.8 Other Grating Types 21 11.3.8.1 Holographic Gratings 21 11.3.8.2 Echelle Grating 21 11.3.8.3 Concave Gratings - The Rowland Grating 22 11.3.8.4 Grisms 23 Worked example - design of visible grating prism 25 11.4 Diffractive Optics 26 11.5 Grating Fabrication 27 11.5.1 Ruled Gratings 27 11.5.2 Holographic Gratings 27 Problem Further reading 30 Chapter 12: Lasers and Laser Applications 12.1 Introduction 1 12.2 Stimulated Emission Schemes 3 12.2.1 General 3 12.2.2 Stimulated Emission in Ruby 3 12.2.3 Stimulated Emission in Neon 4 12.2.4 Stimulated Emission in Semiconductors 6 12.3 Laser Cavities 8 12.3.1 Background 8 12.3.2 Longitudinal Modes 9 Worked Example - Longitudinal Modes in Helium Neon Laser 10 12.3.3 Longitudinal Mode Phase Relationship - Mode Locking 11 12.3.4 Q Switching 12 12.3.5 Distributed Feedback 13 12.3.6 Ring Lasers 13 12.3.7 Transverse Modes 14 12.3.6 Gaussian Beam Propagation in a Laser Cavity 16 Worked Example - Helium Neon Laser Beam 17 12.4 Taxonomy Of Lasers 18 12.4.1 General 18 12.4.2 Categorisation 18 12.4.2.1 Gas Lasers 18 12.4.2.2 Solid State Lasers 18 12.4.2.3 Fibre Lasers 18 12.4.2.4 Semiconductor Lasers 19 12.4.2.5 Chemical Lasers 19 12.4.2.6 Dye Lasers 19 12.4.2.7 Optical Parametric Oscillators and Non-Linear Devices 20 12.4.2.8 Other Lasers 21 12.4.3 Temporal Characteristics 22 12.4.4 Power 22 12.5 List of Laser Types 22 12.5.1 Gas Lasers 23 12.5.2 Solid State Lasers 23 12.5.3 Semiconductor Lasers 24 12.5.4 Chemical Lasers 25 12.5.5 Dye Lasers 25 12.5.6 Other Lasers 26 12.6 Laser Applications 26 12.6.1 General 26 12.6.2 Materials Processing 27 12.6.3 Lithography 29 12.6.4 Medical Applications 29 12.6.5 Surveying and Dimensional Metrology 29 12.6.6 Alignment 30 12.6.7 Interferometry and Holography 31 12.6.8 Spectroscopy 32 12.6.9 Data Recording 33 12.6.10 Telecommunications 33 Problem Further reading 34 Chapter 13: Optical Fibres and Waveguides 13.1 Introduction 1 13.2 Geometrical Description of Fibre Propagation 2 13.2.1 Step Index Fibre 2 13.2.2 Graded Index Optics 3 13.2.2.1 Graded Index Fibres 3 13.2.2.2 Gradient Index Optics 5 Worked Example - GRIN Lens 7 13.2.3 Fibre Bend Radius 8 13.3 Waveguides and Modes 10 13.3.1 Simple Description - Slab Modes 10 Worked Example - Cut off Wavelength of a Slab Waveguide 13 13.3.2 Propagation Velocity and Dispersion 13 13.3.3 Strong and Weakly Guiding Structures 16 13.4 Single Mode Optical Fibres 17 13.4.1 Basic Analysis 17 Worked Example - Single Mode Fibre 18 13.4.2 Generic Analysis of Single Mode Fibres 19 Worked Example - Single Mode Fibre Mode Size 21 13.4.3 Impact of Fibre Bending 21 13.5 Optical Fibre Materials 22 13.5.1 General 22 13.5.2 Attenuation 22 13.5.3 Fibre Dispersion 23 13.6 Coupling of Light into Fibres 24 13.6.1 General 24 13.6.2 Coupling into Single Mode Fibres 25 13.6.1 Overlap Integral 25 13.6.2 Coupling of Gaussian Beams into Single Mode Fibres 25 Worked Example - Single Mode Fibre Coupling 27 13.7 Fibre Splicing and Connection 28 13.8 Fibre Splitters, Combiners and Couplers 29 13.9 Polarisation and Polarisation Maintaining Fibres 29 13.9.1 Polarisation Mode Dispersion 29 13.9.2 Polarisation Maintaining Fibre 29 13.10 Focal Ratio Degradation 30 13.11 Periodic Structures in Fibres 30 13.11.1 Photonic Crystal Fibres and Holey Fibres 30 13.11.2 Fibre Bragg Gratings 31 13.12 Fibre Manufacture 31 13.13 Fibre Applications 32 Problem Further reading 34 Chapter 14: Detectors 14.1: Introduction 1 14.2 Detector Types 1 14.2.1 Photomultiplier Tubes 1 14.2.1.1 General Operating Principle 1 14.2.1.2 Dynode Multiplication 2 14.2.1.3 Spectral Sensitivity 3 4.2.1.4 Dark Current 4 14.2.1.5 Linearity 4 14.2.1.6 Photon Counting 5 14.2.2 Photodiodes 5 14.2.2.1 General Operating Principle 5 14.2.2.2 Sensitivity 7 14.2.2.3 Dark Current 8 14.2.2.4 Linearity 8 14.2.2.5 Breakdown 9 14.2.3 Avalanche Photodiode 10 14.2.4 Array Detectors 10 14.2.4.1 Introduction 10 14.2.4.2 Charged Coupled Devices 11 14.2.4.3 CMOS Technology 11 14.2.4.4 Sensitivity 12 14.2.4.4 Dark Current 12 14.2.4.5 Linearity 12 14.2.5 Photoconductive Detectors 12 14.2.6 Bolometers 14 14.3 Noise in Detectors 15 14.3.1 Introduction 15 14.3.2 Shot Noise 16 Worked Example - Laser beam shot noise. 16 14.3.3 Gain Noise 17 14.3.4 Background Noise 17 14.3.5 Dark Current 18 14.3.6 Johnson Noise 18 14.3.6.1 General 18 Worked Example - Photomultiplier Sensitivity. 20 14.3.6.2 Johnson Noise in Array Detectors 20 Worked Example: Read noise in a representative pixel. 21 14.3.7 Pink or 'Flicker' Noise 23 14.3.9 Combining Multiple Noise Sources 24 14.3.10 Detector Sensitivity 25 Worked Example NEP of a Photodiode 25 10.4 Radiometry and Detectors 26 Worked Example SNR in a Thermal Camera 27 14.5 Array Detectors in Instrumentation 28 14.5.1 Flat Fielding of Array Detectors 28 14.5.2 Image Centroiding 28 14.5.3 Array Detectors and MTF 29 Problem Further reading 31 Chapter 15: Optical Instrumentation - Imaging Devices 15.1: Introduction 1 15.2 The Design of Eyepieces 2 15.2.1 Underlying Principles 2 15.2.3 Kellner Eyepiece 5 15.2.4 Ploessl Eyepiece 6 15.2.5 More Complex Designs 8 15.3 Microscope Objectives 10 15.3.1 Background to Objective Design 10 15.3.2 Design of Microscope Objectives 12 15.4 Telescopes 14 15.4.1 Introduction 14 15.4.2 Refracting Telescopes 15 15.4.3 Reflecting Telescopes 16 15.4.3.1 Introduction 16 15.4.3.2 Simple Reflecting Telescopes 16 15.4.3.3 Ritchey-Chretien Telescope 18 Worked Example - Hubble Space Telescope 21 15.4.3.4 Three Mirror Anastigmat 21 Worked Example - TMA Design 24 15.4.3.5 Quad Mirror Anastigmat 24 15.4.4 Catadioptric Systems 25 15.5 Camera Systems 26 15.5.1 Introduction 26 15.5.2 Simple Camera Lenses 27 15.5.3 Advanced Designs 28 15.5.3.1 Cooke Triplet 28 Worked Example - Cooke Triplet 29 15.5.3.2 Variations on the Cooke Triplet 31 15.5.3.3 Double Gauss Lens 32 15.5.3.4 Zoom Lenses 35 Problem Further reading 40 Chapter: 16 Interferometers & Related Instruments 16.1: Introduction 1 16.2 Background 1 16.2.1 Fringes and Fringe Visibility 1 16.2.2 Data Processing and Wavefront Mapping 3 16.2 Classical Interferometers 3 16.2.1 The Fizeau Interferometer 3 16.2.2 The Twyman Green Interferometer 4 16.2.3 Mach-Zehnder Interferometer 6 16.2.4 Lateral Shear Interferometer 7 16.2.5 White Light Interferometer 8 16.2.6 Interference Microscopy 11 16.2.7 Vibration Free Interferometry 11 16.3 Calibration 12 16.3.1 Introduction 12 16.3.1 Calibration and Characterisation of Reference Spheres 13 16.3.2 Characterisation and Calibration of Reference Flats 14 16.4 Interferometry and Null Tests 15 16.4.1 Introduction 15 16.4.2 Testing of Conics 16 16.4.3 Null Lens Tests 17 Worked Example 18 16.4.4 Computer Generated Holograms 20 16.5 Interferometry and Phase Shifting 21 16.6 Miscellaneous Characterisation Techniques 22 16.6.1 Introduction 22 16.6.2 Shack Hartmann Sensor 22 16.6.3 Knife Edge Tests 24 16.6.4 Fringe Projection Techniques 25 16.6.5 Scanning Pentaprism Test 27 16.6.6 Confocal Gauge 28 Problem Further reading 30 Chapter 17: Spectrometers & Related Instruments 17.1: Introduction 1 17.2 Basic Spectrometer Designs 1 17.2.1 Introduction 2 17.2.2 Grating Spectrometers and Order Sorting 2 17.2.2 Czerny Turner Monochromator 3 17.2.2.1 Basic Design 3 17.2.2.2 Resolution 4 17.2.2.3 Aberrations 6 Worked Example 8 17.2.2.4 Flux and Throughput 9 17.2.2.5 Instrument Scaling 9 Worked Example - Extremely Large Telescope Spectrometer Scaling 10 17.2.3 Fastie-Ebert Spectrometer 11 17.2.4 Offner Spectrometer 11 17.2.5 Imaging Spectrometers 12 17.2.5.1 Introduction 12 17.2.5.2 Spectrometer Architecture 13 17.2.5.3 Spectrometer Design 14 Worked Example - Spectroscope Design 15 17.2.5.4 Flux and Throughput 16 17.2.5.5 Straylight and Ghosts 17 17.2.5.6 2D Object Conditioning 18 17.2.6 Echelle Spectrometers 19 17.2.7 Double and Triple Spectrometers 21 17.3 Time Domain Spectrometry 22 17.3.1 Fourier Transform Spectrometry 22 17.3.2 Wavemeters 24 Problem Further reading 26 Chapter 18: 18.1: Introduction 1 18.1.1 Background 1 18.1.2 Tolerancing 1 18.1.3 Design Process 2 18.1.4 Optical Modelling - Outline 2 18.1.4.1 Sequential Modelling 2 18.1.4.1 Non Sequential Modelling 3 18.2 Design Philosophy 3 18.2.1 Introduction 3 18.2.2 Definition of Requirements 4 18.2.3 Requirement Partitioning and Budgeting 5 Worked Example - Partitioning of Requirements 6 18.2.4 Design Process 7 18.2.5 Summary of Design Tools 8 18.3 Optical Design Tools 9 18.3.1 Introduction 9 18.3.2 Establishing the Model 10 18.3.2.1 Lens Data Editor 10 18.3.2.2 System Parameters 13 18.3.2.3 Co-ordinates 14 18.3.2.4 Merit Function Editor 15 18.3.3 Analysis 16 18.3.4 Optimisation 19 18.3.5 Tolerancing 21 18.3.5.1 Background 21 18.3.5.2 Tolerance Editor 22 18.3.5.3 Sensitivity Analysis 23 18.3.5.4 Monte-Carlo Simulation 24 18.3.5.5 Refining the Tolerancing Model 25 18.3.5.6 Default Tolerances 27 18.3.5.7 Registration and Mechanical Tolerances 29 18.3.5.8 Sophisticated Modelling of Form Error 30 18.4 Non-Sequential Modelling 31 18.4.1 Introduction 31 18.4.2 Applications 31 18.4.3 Establishing the Model 32 18.4.3.1 Background and Model Description 32 18.4.3.2 Lens Data Editor 33 18.4.3.3 Wavelengths 35 18.4.3.4 Analysis 35 18.4.4 Baffling 37 18.5 Afterword 39 Problem Further reading 40 Chapter 19: Mechanical and Thermo-Mechanical Modelling 19.1: Introduction 1 19.1.1 Background 1 19.1.2 Tolerancing 1 19.1.3 Athermal Design 2 19.1.4 Mechanical Models 2 19.2 Basic Elastic Theory 2 19.2.1 Introduction 2 19.2.2 Elastic Theory 2 19.3 Basic Analysis of Mechanical Distortion 5 19.3.1 Introduction 5 19.3.2 Optical Bench Distortion 5 19.3.2.1 Definition of the Problem 5 19.3.2.2 Application of External Forces 7 19.3.2.3 Establishing Boundary Conditions 9 19.3.2.4 Modelling of Deflection under Self Loading 9 Worked Example - Deflection of Optical Table 10 19.3.2.5 Modelling of Deflection under 'Point' Load 11 19.3.2.6 Impact of Optical Bench Distortion 12 19.3.3 Simple Distortion of Optical Components 13 19.3.3.1 Introduction 13 19.3.3.2 Self Weight Deflection 13 19.3.3.3 Vacuum or Pressure Flexure 15 19.3.4 Effects of Component Mounting 17 19.3.4.1 General 17 19.3.4.2 Degrees of Freedom in Mounting 18 19.3.4.3 Modelling of Mounting Deformation in Mirrors 18 19.3.2.4 Modelling of Mounting Stresses in Lens Components 21 19.4 Basic Analysis of Thermo-Mechanical Distortion 23 19.4.1 Introduction 23 19.4.2 Thermal Distortion of Optical Benches 24 19.4.3 Impact of Focal Shift and Athermal Design 26 19.4.4 Differential Expansion of a Component Stack 27 19.4.5 Impact of Mounting and Bonding 27 19.4.5.1 Bonding 27 19.4.5.2 Mounting 28 19.5 Finite Element Analysis 31 19.5.1 Introduction 31 19.5.2 Underlying Mechanics 32 19.5.2.1 Definition of Static Equilibrium 32 19.5.2.2 Boundary Conditions 33 19.5.3 FEA Meshing 33 19.5.4 Some FEA Models 36 Problem 19.1 Optical Bench Deflection 36 Problem 19.2 Optical Bench Deflection and Misalignment 36 Problem 19.3 Thermal Distortion 36 Problem 19.4 Lens Mounting 37 Problem 19.5 Mounting Compliance and Expansion 37 Problem 19.6 Three Point Mounting - I 37 Problem 19.7 Three Point Mounting - II 37 Further reading 37 Chapter 20: Optical Component Manufacture 20.1: Introduction 1 20.1.1 Context 1 20.1.2 Manufacturing Processes 1 20.2 Conventional Figuring of Optical Surfaces 2 20.2.1 Introduction 2 20.2.2 Grinding Process 3 20.2.3 Fine Grinding 5 20.2.4 Polishing 5 20.2.5 Metrology 7 20.3 Specialist Shaping and Polishing Techniques 9 20.3.1 Introduction 9 20.3.2 Computer Controlled Sub-Aperture Polishing 10 20.3.3 Magneto-rheological Polishing 11 20.3.4 Ion Beam Figuring 12 20.4 Diamond Machining 12 20.4.1 Introduction 12 20.4.2 Basic Construction of a Diamond Machine Tool 13 20.4.3 Machining Configurations 14 20.4.3.1 Single Point Diamond Turning 14 20.4.3.2 Raster Flycutting 16 20.4.4 Fixturing and Stability 17 2.4.5 Moulding and Replication 17 20.5 Edging and Bonding 18 20.5.1 Introduction 18 20.5.1 Edging of Lenses 19 20.5.2 Bonding 20 20.6 Form Error and Surface Roughness 21 20.7 Standards and Drawings 23 20.7.1 Introduction 23 20.7.2 ISO 10110 23 20.7.2.1 Background 23 20.7.2.2 Material Properties 24 20.7.2.3 Surface Properties 25 20.7.2.4 General Information 27 20.7.3 Example Drawing 27 Further reading 29 Chapter 21: System Integration and Alignment 21.1: Introduction 1 21.1.1 Background 1 21.1.2 Mechanical Constraint 1 21.1.3 Mounting Geometries 2 21.2 Component Mounting 3 21.2.1 Lens Barrel Mounting 3 21.2.2 Optical Bench Mounting 5 21.2.2.1 General 5 21.2.2.2 Kinematic Mounts 6 21.2.2.3 Gimbal Mounts 7 21.2.2.4 Flexure Mounts 8 21.2.2.5 Hexapod Mounting 9 21.2.2.6 Linear Stages 10 21.2.2.7 Micropositioning and Piezo-Stages 12 21.2.3 Mounting of Large Components and Isostatic Mounting 13 21.3 Optical Bonding 16 21.3.1 Introduction 16 21.3.2 Material Properties 17 21.3.3 Adhesive Curing 17 21.3.4 Applications 18 21.3.5 Summary of Adhesive Types and Applications 20 21.4 Alignment 21 21.4.1 Introduction 21 21.4.2 Alignment and Boresight Error 21 21.4.3 Alignment and Off-Axis Aberrations 22 21.4.4 Autocollimation and Alignment 22 21.4.5 Alignment and Spot Centroiding 24 21.4.6 Alignment and Off-Axis Aberrations 25 21.5 Cleanroom Assembly 26 21.5.1 Introduction 26 21.5.2 Cleanrooms and Cleanroom Standards 27 21.5.3 Particle Deposition and Surface Cleanliness 27 Further reading 30 Chapter 22: Optical Test and Verification 22.1: Introduction 1 22.1.1 General 1 22.1.2 Verification 1 22.1.3 Systems, Subsystems and Components 1 22.1.4 Environmental Testing 2 22.1.5 Optical Performance Tests 2 22.2 Facilities 3 22.3 Environmental Testing 5 22.3.1 Introduction 5 22.3.2 Dynamical Tests 6 22.3.2.1 Vibration 6 22.3.2.2 Mechanical Shock 7 22.3.3 Thermal Environment 8 22.3.3.1 Temperature and Humidity Cycling 8 22.3.3.2 Thermal Shock 9 22.4 Geometrical Testing 10 22.4.1 Introduction 10 22.4.2 Focal Length and Cardinal Point Determination 10 22.4.3 Measurement of Distortion 14 22.4.4 Measurement of Angles and Displacements 14 22.4.4.1 General 14 22.4.4.2 Calibration 16 22.4.4.3 Co-ordinate Measurement Machines 17 22.5 Image Quality Testing 18 22.5.1 Introduction 18 22.5.2 Direct Measurement of Image Quality 18 22.5.3 Interferometry 19 22.6 Radiometric Tests 19 22.6.1 Introduction 19 22.6.2 Detector Characterisation 20 22.6.2.1 General 20 22.6.2.2 Pixelated Detector Flat Fielding 20 22.6.3 Measurement of Spectral Irradiance and Radiance 21 22.6.4 Characterisation of Spectrally Dependent Flux 22 22.6.5 Stray Light and Low Light Levels 22 22.6.6 Polarisation Measurements 23 22.7 Material and Component Testing 24 22.7.1 Introduction 24 22.7.2 Material Properties 24 22.7.2.1 Measurement of Refractive Index. 24 22.7.2.2 Bubbles and Inclusions 25 22.7.3 Surface Properties 26 22.7.3.1 Measurement of Surface Roughness 26 22.7.3.2 Measurement of Cosmetic Surface Quality 26 Further reading 27
זמן אספקה 21 ימי עסקים