‏882.00 ₪

Principles of Tribology, 2nd Edition

‏882.00 ₪
ISBN13
9781119214892
יצא לאור ב
New York
מהדורה
2nd Edition
זמן אספקה
21 ימי עסקים
עמודים
608
פורמט
Hardback
תאריך יציאה לאור
25 ביולי 2017
Professors Wen and Huang present current developments in tribology research along with tribology fundamentals and applications, including lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. In addition to classical tribology, Wen and Huang cover the research areas of the modern tribology, as well as the regularities and characteristics of tribological phenomena in practice. Furthermore, the authors present the basic theory, numerical analysis methods, and experimental measuring techniques of tribology as well as their applications in engineering. Provides a systematic presentation of tribology fundamentals and their applications Discusses the current states and development trends in tribology research Applies the applications to modern day engineering Computer programs available for download from the book's companion site Principles of Tribology is aimed at postgraduates and senior-level undergraduates studying tribology, and can be used for courses covering theory and applications. Tribology professionals and students specializing in allied areas of mechanical engineering and materials science will also find the book to be a helpful reference or introduction to the topic. Companion website for the book: www.wiley.com/go/wen/tribology
מידע נוסף
מהדורה 2nd Edition
עמודים 608
פורמט Hardback
ISBN10 1119214890
יצא לאור ב New York
תאריך יציאה לאור 25 ביולי 2017
תוכן עניינים About the Authors xxi Second Edition Preface xxiii Preface xxv Introduction xxvii Part I Lubrication Theory 1 1 Properties of Lubricants 3 1.1 Lubrication States 3 1.2 Density of Lubricant 5 1.3 Viscosity of Lubricant 7 1.3.1 Dynamic Viscosity and Kinematic Viscosity 7 1.3.1.1 Dynamic Viscosity 7 1.3.1.2 Kinematic Viscosity 8 1.3.2 Relationship between Viscosity and Temperature 9 1.3.2.1 Viscosity-Temperature Equations 9 1.3.2.2 ASTM Viscosity-Temperature Diagram 9 1.3.2.3 Viscosity Index 10 1.3.3 Relationship between Viscosity and Pressure 10 1.3.3.1 Relationships between Viscosity, Temperature and Pressure 11 1.4 Non-Newtonian Behaviors 12 1.4.1 Ree-Eyring Constitutive Equation 12 1.4.2 Visco-Plastic Constitutive Equation 13 1.4.3 Circular Constitutive Equation 13 1.4.4 Temperature-Dependent Constitutive Equation 13 1.4.5 Visco-Elastic Constitutive Equation 14 1.4.6 Nonlinear Visco-Elastic Constitutive Equation 14 1.4.7 A Simple Visco-Elastic Constitutive Equation 15 1.4.7.1 Pseudoplasticity 16 1.4.7.2 Thixotropy 16 1.5 Wettability of Lubricants 16 1.5.1 Wetting and Contact Angle 17 1.5.2 Surface Tension 17 1.6 Measurement and Conversion of Viscosity 19 1.6.1 Rotary Viscometer 19 1.6.2 Off-Body Viscometer 19 1.6.3 Capillary Viscometer 19 References 21 2 Basic Theories of Hydrodynamic Lubrication 22 2.1 Reynolds Equation 22 2.1.1 Basic Assumptions 22 2.1.2 Derivation of the Reynolds Equation 23 2.1.2.1 Force Balance 23 2.1.2.2 General Reynolds Equation 25 2.2 Hydrodynamic Lubrication 26 2.2.1 Mechanism of Hydrodynamic Lubrication 26 2.2.2 Boundary Conditions and Initial Conditions of the Reynolds Equation 27 2.2.2.1 Boundary Conditions 27 2.2.2.2 Initial Conditions 28 2.2.3 Calculation of Hydrodynamic Lubrication 28 2.2.3.1 Load-Carrying CapacityW 28 2.2.3.2 Friction ForceF 28 2.2.3.3 Lubricant FlowQ 29 2.3 Elastic Contact Problems 29 2.3.1 Line Contact 29 2.3.1.1 Geometry and Elasticity Simulations 29 2.3.1.2 Contact Area and Stress 30 2.3.2 Point Contact 31 2.3.2.1 Geometric Relationship 31 2.3.2.2 Contact Area and Stress 32 2.4 Entrance Analysis of EHL 34 2.4.1 Elastic Deformation of Line Contacts 35 2.4.2 Reynolds Equation Considering the Effect of Pressure-Viscosity 35 2.4.3 Discussion 36 2.4.4 Grubin FilmThickness Formula 37 2.5 Grease Lubrication 38 References 40 3 Numerical Methods of Lubrication Calculation 41 3.1 Numerical Methods of Lubrication 42 3.1.1 Finite Difference Method 42 3.1.1.1 Hydrostatic Lubrication 44 3.1.1.2 Hydrodynamic Lubrication 44 3.1.2 Finite Element Method and Boundary Element Method 48 3.1.2.1 Finite Element Method (FEM) 48 3.1.2.2 Boundary Element Method 49 3.1.3 Numerical Techniques 51 3.1.3.1 Parameter Transformation 51 3.1.3.2 Numerical Integration 51 3.1.3.3 Empirical Formula 53 3.1.3.4 SuddenThickness Change 53 3.2 Numerical Solution of the Energy Equation 54 3.2.1 Conduction and Convection of Heat 55 3.2.1.1 Conduction Heat Hd 55 3.2.1.2 Convection Heat Hv 55 3.2.2 Energy Equation 56 3.2.3 Numerical Solution of Energy Equation 59 3.3 Numerical Solution of Elastohydrodynamic Lubrication 60 3.3.1 EHL Numerical Solution of Line Contacts 60 3.3.1.1 Basic Equations 60 3.3.1.2 Solution of the Reynolds Equation 62 3.3.1.3 Calculation of Elastic Deformation 62 3.3.1.4 Dowson-Higginson FilmThickness Formula of Line Contact EHL 64 3.3.2 EHL Numerical Solution of Point Contacts 64 3.3.2.1 The Reynolds Equation 65 3.3.2.2 Elastic Deformation Equation 66 3.3.2.3 Hamrock-Dowson FilmThickness Formula of Point Contact EHL 66 3.4 Multi-Grid Method for Solving EHL Problems 68 3.4.1 Basic Principles of Multi-Grid Method 68 3.4.1.1 Grid Structure 68 3.4.1.2 Discrete Equation 68 3.4.1.3 Transformation 69 3.4.2 Nonlinear Full Approximation Scheme for the Multi-Grid Method 69 3.4.3 V andWIterations 71 3.4.4 Multi-Grid Solution of EHL Problems 71 3.4.4.1 Iteration Methods 71 3.4.4.2 Iterative Division 72 3.4.4.3 Relaxation Factors 73 3.4.4.4 Numbers of Iteration Times 73 3.4.5 Multi-Grid Integration Method 73 3.4.5.1 Transfer Pressure Downwards 74 3.4.5.2 Transfer Integral Coefficients Downwards 74 3.4.5.3 Integration on the Coarser Mesh 74 3.4.5.4 Transfer Back Integration Results 75 3.4.5.5 Modification on the Finer Mesh 75 References 76 4 Lubrication Design of Typical Mechanical Elements 78 4.1 Slider and Thrust Bearings 78 4.1.1 Basic Equations 78 4.1.1.1 Reynolds Equation 78 4.1.1.2 Boundary Conditions 78 4.1.1.3 Continuous Conditions 79 4.1.2 Solutions of Slider Lubrication 79 4.2 Journal Bearings 81 4.2.1 Axis Position and Clearance Shape 81 4.2.2 Infinitely Narrow Bearings 82 4.2.2.1 Load-Carrying Capacity 83 4.2.2.2 Deviation Angle and Axis Track 83 4.2.2.3 Flow 84 4.2.2.4 Frictional Force and Friction Coefficient 84 4.2.3 InfinitelyWide Bearings 85 4.3 Hydrostatic Bearings 88 4.3.1 Hydrostatic Thrust Plate 89 4.3.2 Hydrostatic Journal Bearings 90 4.3.3 Bearing Stiffness andThrottle 90 4.3.3.1 Constant Flow Pump 91 4.3.3.2 Capillary Throttle 91 4.3.3.3 Thin-Walled OrificeThrottle 92 4.4 Squeeze Bearings 92 4.4.1 Rectangular Plate Squeeze 93 4.4.2 Disc Squeeze 94 4.4.3 Journal Bearing Squeeze 94 4.5 Dynamic Bearings 96 4.5.1 Reynolds Equation of Dynamic Journal Bearings 96 4.5.2 Simple Dynamic Bearing Calculation 98 4.5.2.1 A Sudden Load 98 4.5.2.2 Rotating Load 99 4.5.3 General Dynamic Bearings 100 4.5.3.1 Infinitely Narrow Bearings 100 4.5.3.2 Superimposition Method of Pressures 101 4.5.3.3 Superimposition Method of Carrying Loads 101 4.6 Gas Lubrication Bearings 102 4.6.1 Basic Equations of Gas Lubrication 102 4.6.2 Types of Gas Lubrication Bearings 103 4.7 Rolling Contact Bearings 106 4.7.1 Equivalent Radius R 107 4.7.2 Average Velocity U 107 4.7.3 Carrying Load PerWidthW/b 107 4.8 Gear Lubrication 108 4.8.1 Involute Gear Transmission 109 4.8.1.1 Equivalent Curvature Radius R 110 4.8.1.2 Average Velocity U 111 4.8.1.3 Load PerWidthW/b 112 4.8.2 Arc Gear Transmission EHL 112 4.9 Cam Lubrication 114 References 116 5 Special Fluid Medium Lubrication 118 5.1 Magnetic Hydrodynamic Lubrication 118 5.1.1 Composition and Classification of Magnetic Fluids 118 5.1.2 Properties of Magnetic Fluids 119 5.1.2.1 Density of Magnetic Fluids 119 5.1.2.2 Viscosity of Magnetic Fluids 119 5.1.2.3 Magnetization Strength of Magnetic Fluids 120 5.1.2.4 Stability of Magnetic Fluids 120 5.1.3 Basic Equations of Magnetic Hydrodynamic Lubrication 121 5.1.4 Influence Factors on Magnetic EHL 123 5.2 Micro-Polar Hydrodynamic Lubrication 124 5.2.1 Basic Equations of Micro-Polar Fluid Lubrication 124 5.2.1.1 Basic Equations of Micro-Polar Fluid Mechanics 124 5.2.1.2 Reynolds Equation of Micro-Polar Fluid 125 5.2.2 Influence Factors on Micro-Polar Fluid Lubrication 128 5.2.2.1 Influence of Load 128 5.2.2.2 Main Influence Parameters of Micro-Polar Fluid 129 5.3 Liquid Crystal Lubrication 130 5.3.1 Types of Liquid Crystal 130 5.3.1.1 Tribological Properties of Lyotropic Liquid Crystal 131 5.3.1.2 Tribological Properties ofThermotropic Liquid Crystal 131 5.3.2 Deformation Analysis of Liquid Crystal Lubrication 132 5.3.3 Friction Mechanism of Liquid Crystal as a Lubricant Additive 136 5.3.3.1 Tribological Mechanism of 4-pentyl-4'-cyanobiphenyl 136 5.3.3.2 Tribological Mechanism of Cholesteryl Oleyl Carbonate 136 5.4 Electric Double Layer Effect inWater Lubrication 137 5.4.1 Electric Double Layer Hydrodynamic Lubrication Theory 138 5.4.1.1 Electric Double Layer Structure 138 5.4.1.2 Hydrodynamic Lubrication Theory of Electric Double Layer 138 5.4.2 Influence of Electric Double Layer on Lubrication Properties 142 5.4.2.1 Pressure Distribution 142 5.4.2.2 Load-Carrying Capacity 143 5.4.2.3 Friction Coefficient 144 5.4.2.4 An Example 144 References 145 6 Lubrication Transformation and Nanoscale Thin Film Lubrication 147 6.1 Transformations of Lubrication States 147 6.1.1 Thickness-Roughness Ratio ? 147 6.1.2 Transformation from Hydrodynamic Lubrication to EHL 148 6.1.3 Transformation from EHL to Thin Film Lubrication 149 6.2 Thin Film Lubrication 152 6.2.1 Phenomenon ofThin Film Lubrication 153 6.2.2 Time Effect of Thin Film Lubrication 154 6.2.3 Shear Strain Rate Effect onThin Film Lubrication 157 6.3 Analysis ofThin Film Lubrication 158 6.3.1 Difficulties in Numerical Analysis of Thin Film Lubrication 158 6.3.2 Tichy's Thin Film Lubrication Models 160 6.3.2.1 Direction Factor Model 160 6.3.2.2 Surface Layer Model 161 6.3.2.3 Porous Surface Layer Model 161 6.4 Nano-Gas Film Lubrication 161 6.4.1 Rarefied Gas Effect 162 6.4.2 Boundary Slip 163 6.4.2.1 Slip Flow 163 6.4.2.2 Slip Models 163 6.4.2.3 Boltzmann Equation for Rarefied Gas Lubrication 165 6.4.3 Reynolds Equation Considering the Rarefied Gas Effect 165 6.4.4 Calculation of Magnetic Head/Disk of UltraThin Gas Lubrication 166 6.4.4.1 Large Bearing Number Problem 167 6.4.4.2 Sudden Step Change Problem 167 6.4.4.3 Solution of Ultra-Thin Gas Lubrication of Multi-Track Magnetic Heads 167 References 169 7 Boundary Lubrication and Additives 171 7.1 Types of Boundary Lubrication 171 7.1.1 Stribeck Curve 171 7.1.2 Adsorption Films and Their Lubrication Mechanisms 172 7.1.2.1 Adsorption Phenomena and Adsorption Films 172 7.1.2.2 Structure and Property of Adsorption Films 174 7.1.3 Chemical Reaction Film and its Lubrication Mechanism 177 7.1.3.1 Additives of Chemical Reaction Film 178 7.1.3.2 Notes for Applications of Extreme Pressure Additives 178 7.1.4 Other Boundary Films and their Lubrication Mechanisms 179 7.1.4.1 High Viscosity Thick Film 179 7.1.4.2 Polishing Thin Film 179 7.1.4.3 Surface Softening Effect 179 7.2 Theory of Boundary Lubrication 179 7.2.1 Boundary Lubrication Model 179 7.2.2 Factors Influencing Performance of Boundary Films 181 7.2.2.1 Internal Pressure Caused by Surface Tension 181 7.2.2.2 Adsorption Heat of Boundary Film 182 7.2.2.3 Critical Temperature 183 7.2.3 Strength of Boundary Film 184 7.3 Lubricant Additives 185 7.3.1 Oily Additives 185 7.3.2 Tackifier 186 7.3.3 Extreme Pressure Additives (EP Additives) 187 7.3.4 Anti-Wear Additives 187 7.3.5 Other Additives 187 References 189 8 Lubrication Failure and Mixed Lubrication 190 8.1 Roughness and Viscoelastic Material Effects on Lubrication 190 8.1.1 Modifications of Micro-EHL 190 8.1.2 Viscoelastic Model 191 8.1.3 LubricatedWear 192 8.1.3.1 LubricatedWear Criteria 193 8.1.3.2 LubricatedWear Model 193 8.1.3.3 LubricatedWear Example 193 8.2 Influence of Limit Shear Stress on Lubrication Failure 195 8.2.1 Visco-Plastic Constitutive Equation 195 8.2.2 Slip of Fluid-Solid Interface 196 8.2.3 Influence of Slip on Lubrication Properties 196 8.3 Influence of Temperature on Lubrication Failure 200 8.3.1 Mechanism of Lubrication Failure Caused by Temperature 200 8.3.2 Thermal Fluid Constitutive Equation 201 8.3.3 Analysis of Lubrication Failure 202 8.4 Mixed Lubrication 203 References 207 Part II Friction andWear 209 9 Surface Topography and Contact 211 9.1 Parameters of Surface Topography 211 9.1.1 ArithmeticMean Deviation Ra 211 9.1.2 Root-Mean-Square Deviation (RMS) ? or Rq 211 9.1.3 Maximum Height Rmax 212 9.1.4 Load-Carrying Area Curve 212 9.1.5 ArithmeticMean Interception Length of Centerline Sma 212 9.1.5.1 Slope z? a or z? q 213 9.1.5.2 Peak Curvature Ca or Cq 213 9.2 Statistical Parameters of Surface Topography 213 9.2.1 Height Distribution Function 214 9.2.2 Deviation of Distribution 215 9.2.3 Autocorrelation Function of Surface Profile 216 9.3 Structures and Properties of Surface 217 9.4 Rough Surface Contact 219 9.4.1 Single Peak Contact 219 9.4.2 Ideal Roughness Contact 220 9.4.3 Random Roughness Contact 221 9.4.4 Plasticity Index 223 References 223 10 Sliding Friction and its Applications 225 10.1 Basic Characteristics of Friction 225 10.1.1 Influence of Stationary Contact Time 226 10.1.2 Jerking Motion 226 10.1.3 Pre-Displacement 227 10.2 Macro-FrictionTheory 228 10.2.1 Mechanical EngagementTheory 228 10.2.2 Molecular Action Theory 229 10.2.3 Adhesive FrictionTheory 229 10.2.3.1 Main Points of Adhesive Friction Theory 230 10.2.3.2 Revised Adhesion Friction Theory 232 10.2.4 Plowing Effect 233 10.2.5 Deformation Energy Friction Theory 235 10.2.6 Binomial FrictionTheory 236 10.3 Micro-FrictionTheory 238 10.3.1 "Cobblestone" Model 238 10.3.2 Oscillator Models 240 10.3.2.1 Independent Oscillator Model 240 10.3.2.2 Composite Oscillator Model 241 10.3.2.3 FK Model 242 10.3.3 Phonon Friction Model 242 10.4 Sliding Friction 243 10.4.1 Influence of Load 243 10.4.2 Influence of Sliding Velocity 244 10.4.3 Influence of Temperature 245 10.4.4 Influence of Surface Film 245 10.5 Other Friction Problems and Friction Control 246 10.5.1 Friction in SpecialWorking Conditions 246 10.5.1.1 High Velocity Friction 246 10.5.1.2 High Temperature Friction 246 10.5.1.3 Low Temperature Friction 247 10.5.1.4 Vacuum Friction 247 10.5.2 Friction Control 247 10.5.2.1 Method of Applying Voltage 247 10.5.2.2 Effectiveness of Electronic Friction Control 248 10.5.2.3 Real-Time Friction Control 249 References 250 11 Rolling Friction and its Applications 252 11.1 Basic Theories of Rolling Friction 252 11.1.1 Rolling Resistance Coefficient 252 11.1.2 Rolling Friction Theories 254 11.1.2.1 HysteresisTheory 255 11.1.2.2 Plastic DeformationTheory 256 11.1.2.3 Micro Slip Theory 257 11.1.3 Adhesion Effect on Rolling Friction 258 11.1.4 Factors Influencing Rolling Friction of Wheel and Rail 260 11.1.5 Thermal Analysis ofWheel and Rail 262 11.1.5.1 Heat Transferring Model ofWheel and Rail Contact 262 11.1.5.2 Temperature Rise Analysis of Wheel and Rail Contact 264 11.1.5.3 Transient Temperature Rise Analysis ofWheel for Two-DimensionalThermal Shock 268 11.1.5.4 Three-Dimensional Transient Analysis of Temperature Rise of Contact 269 11.1.5.5 Thermal Solution for the Rail 270 11.2 Applications of Rolling Tribology in Design of Lunar Rover 271 11.2.1 Foundations of Force Analysis for Rigid Wheel 271 11.2.1.1 Resistant Force of Driving RigidWheel 271 11.2.1.2 Driving Force and Sliding/Rolling Ratio of the Wheel 274 11.2.2 Mechanics Model of a Wheel on a Soft Surface 275 11.2.2.1 Wheel Sinkage 276 11.2.2.2 Soil Deformation and Stress Model 276 11.2.2.3 Interaction Force between Wheel and Soil 277 11.2.3 Dynamic Analysis of Rolling Mechanics of Lunar Rover with Unequal Diameter Wheel 278 11.2.3.1 Structure with Unequal DiameterWheel 278 11.2.3.2 Interaction model of wheel and soil 278 11.2.3.3 Model and Calculation of Movement for Unequal Diameter Wheel 280 References 280 12 Characteristics andMechanisms of Wear 282 12.1 Classification ofWear 282 12.1.1 Wear Categories 282 12.1.1.1 MechanicalWear 282 12.1.1.2 Molecular and MechanicalWear 283 12.1.1.3 Corrosive and MechanicalWear 283 12.1.2 Wear Process 283 12.1.2.1 Surface Interaction 283 12.1.2.2 Variation of Surface 283 12.1.2.3 Forms of Surface Damage 284 12.1.3 Conversion ofWear 285 12.2 AbrasiveWear 285 12.2.1 Types of AbrasiveWear 285 12.2.2 Factors Influencing AbrasiveWear 286 12.2.3 Mechanism of AbrasiveWear 289 12.3 AdhesiveWear 290 12.3.1 Types of AdhesiveWear 291 12.3.1.1 Light AdhesiveWear 291 12.3.1.2 Common AdhesiveWear 291 12.3.1.3 Scratch 291 12.3.1.4 Scuffing 291 12.3.2 Factors Influencing AdhesiveWear 291 12.3.2.1 Load 291 12.3.2.2 Surface Temperature 292 12.3.2.3 Materials 293 12.3.3 AdhesiveWear Mechanism 294 12.3.4 Criteria of Scuffing 296 12.3.4.1 p0Us c Criterion 296 12.3.4.2 WUns c 296 12.3.4.3 Instantaneous Temperature Criterion 297 12.3.4.4 Scuffing Factor Criterion 298 12.4 FatigueWear 298 12.4.1 Types of FatigueWear 298 12.4.1.1 Superficial FatigueWear and Surface FatigueWear 298 12.4.1.2 Pitting and Peeling 299 12.4.2 Factors Influencing FatigueWear 300 12.4.2.1 Load Property 300 12.4.2.2 Material Property 302 12.4.2.3 Physical and Chemical Effects of the Lubricant 302 12.4.3 Criteria of Fatigue Strength and Fatigue Life 303 12.4.3.1 Contact Stress State 303 12.4.3.2 Contact Fatigue Strength Criteria 304 12.4.3.3 Contact Fatigue Life 306 12.5 CorrosiveWear 307 12.5.1 OxidationWear 307 12.5.2 Special CorrosiveWear 309 12.5.2.1 Factors Influencing the CorrosionWear 309 12.5.2.2 Chemical-Mechanical Polishing 309 12.5.3 Fretting 309 12.5.4 Cavitation Erosion 310 References 312 13 Macro-Wear Theory 314 13.1 Friction Material 315 13.1.1 Friction Material Properties 315 13.1.1.1 Mechanical Properties 315 13.1.1.2 Anti-Friction andWear-Resistance 315 13.1.1.3 Thermal Property 316 13.1.1.4 Lubrication Ability 316 13.1.2 Wear-Resistant Mechanism 316 13.1.2.1 Hard Phase Bearing Mechanism 316 13.1.2.2 Soft Phase Bearing Mechanism 316 13.1.2.3 Porous Saving Oil Mechanism 316 13.1.2.4 Plastic Coating Mechanism 317 13.2 Wear Process Curve 317 13.2.1 Types ofWear Process Curves 317 13.2.2 Running-In 317 13.2.2.1 Working Life 318 13.2.2.2 Measures to Improve the Running-in Performance 319 13.3 Surface Quality andWear 320 13.3.1 Influence of Geometric Quality 321 13.3.2 Physical Quality 323 13.4 Theory of AdhesionWear 324 13.5 Theory of EnergyWear 325 13.6 DelaminationWearTheory and FatigueWear Theory 327 13.6.1 DelaminationWearTheory 327 13.6.2 FatigueWear Theory 329 13.7 Wear Calculation 329 13.7.1 IBMWear Calculation Method 329 13.7.1.1 Type A 330 13.7.1.2 Type B 331 13.7.2 Calculation Method of CombinedWear 331 References 335 14 Anti-Wear Design and Surface Coating 337 14.1 Selection of Lubricant and Additive 337 14.1.1 Lubricant Selection 337 14.1.1.1 Viscosity, Viscosity Index and Viscosity-Pressure Coefficient 339 14.1.1.2 Stability 339 14.1.1.3 Other Requirements 339 14.1.2 Grease Selection 340 14.1.2.1 The Composition of Grease 340 14.1.2.2 Function of Densifier 340 14.1.2.3 Grease Additives 340 14.1.3 Solid Lubricants 341 14.1.4 Seal and Filter 341 14.2 Matching Principles of Friction Materials 343 14.2.1 MaterialMating for AbrasiveWear 343 14.2.2 MaterialMating for AdhesiveWear 344 14.2.3 MaterialMating for Contact FatigueWear 345 14.2.4 Material Mating for FrettingWear 345 14.2.5 MaterialMating for CorrosionWear 345 14.2.6 Surface Hardening 346 14.3 Surface Coating 346 14.3.1 Common PlatingMethods 347 14.3.1.1 BeadWelding 347 14.3.1.2 Thermal Spraying 348 14.3.1.3 Slurry Coating 349 14.3.1.4 Electric Brush Plating 350 14.3.1.5 Plating 350 14.3.2 Design of Surface Coating 354 14.3.2.1 General Principles of Coating Design 354 14.3.2.2 Selection of Surface PlatingMethod 354 14.4 Coating Performance Testing 355 14.4.1 Appearance and Structure 355 14.4.1.1 Coating Appearance 355 14.4.1.2 Measurement of CoatingThickness 355 14.4.1.3 Determination of Coating Porosity 355 14.4.2 Bond Strength Test 356 14.4.2.1 Drop Hammer Impact Test 356 14.4.2.2 Vibrator Impact Test 356 14.4.2.3 Scratch Test 357 14.4.2.4 Broken Test 357 14.4.2.5 Tensile Bond Strength Test 357 14.4.2.6 Shear Bond Strength Test 357 14.4.2.7 Measurement of Internal Bond Strength of Coating 358 14.4.3 Hardness Test 360 14.4.3.1 Micro-Hardness (Hm) Testing 360 14.4.3.2 Hoffman Scratch Hardness Testing 360 14.4.4 Wear Test 360 14.4.5 Tests of Other Performances 361 14.4.5.1 Fatigue Test 361 14.4.5.2 Measurement of Residual Stress 361 References 362 15 Tribological Experiments 363 15.1 Tribological ExperimentalMethod and Devices 363 15.1.1 ExperimentalMethods 363 15.1.1.1 Laboratory Specimen Test 363 15.1.1.2 Simulation Test 363 15.1.1.3 Actual Test 363 15.1.2 Commonly Used Friction andWear Testing Machines 364 15.1.3 EHL andThin Film Lubrication Test 365 15.1.3.1 EHL andThin Film Lubrication Test Machine 365 15.1.3.2 Principle of Relative Light Intensity 366 15.2 Measurement ofWear Capacity 368 15.2.1 Weighing Method 368 15.2.2 Length Measurement Method 368 15.2.3 Profile Method 368 15.2.4 IndentationMethod 369 15.2.5 Grooving Method 371 15.2.6 PrecipitationMethod and Chemical AnalysisMethod 372 15.2.7 Radioactive Method 373 15.3 Analysis of Friction Surface Morphology 373 15.3.1 Analysis of Surface Topography 373 15.3.2 Atomic Force Microscope (AFM) 374 15.3.3 Surface Structure Analysis 375 15.3.4 Surface Chemical Composition Analysis 377 15.3.4.1 Energy Spectrum Analysis 377 15.3.4.2 Electron Probe Micro-Analysis (EPMA) 377 15.4 Wear State Detection 378 15.4.1 Ferrography Analysis 378 15.4.2 Spectral Analysis 379 15.4.3 Lubricant Composition Analysis 380 15.4.4 Mechanical Vibration and Noise Analysis 380 15.4.5 Lubrication State Analysis 380 15.5 Wear Failure Analysis 380 15.5.1 Site Investigation 380 15.5.2 Lubricant and its Supply System 381 15.5.3 Worn Part Analysis 381 15.5.4 Design and Operation 381 References 383 Part III Applied Tribology 385 16 Micro-Tribology 387 16.1 Micro-Friction 387 16.1.1 Macro-Friction and Micro-Friction 387 16.1.2 Micro-Friction and Surface Topography 388 16.1.3 Plowing Effect and Adhesion Effect 391 16.1.3.1 Plowing Effect 391 16.1.3.2 Adhesion Effect 391 16.2 Micro-Contact and Micro-Adhesion 393 16.2.1 Solid Micro-Contact 393 16.2.1.1 Zero Load Contact 393 16.2.1.2 Elastic, Elastic-Plastic and Plastic Contacts 393 16.2.2 Solid Adhesion and Surface Force 394 16.2.2.1 Solid Adhesion Phenomena 394 16.2.2.2 Adhesion and Surface Force 395 16.3 Micro-Wear 396 16.3.1 Micro-Wear Experiment 396 16.3.2 Micro-Wear of Magnetic Head and Disk 398 16.4 Molecular Film and Boundary Lubrication 401 16.4.1 Static Shear Property of Molecular Layer 401 16.4.2 Dynamic Shear Property of Monolayer and Stick-Slip Phenomenon 402 16.4.3 Physical State and Phase Change 404 16.4.4 Temperature Effect and Friction Mechanism 405 16.4.5 Rheological Property of Molecular Film 406 16.4.6 Organized Molecular Film 408 16.4.6.1 LB Film 408 16.4.6.2 Self-Assembled Monolayer 409 References 410 17 Metal Forming Tribology 412 17.1 Mechanics Basis of Metal Forming 412 17.1.1 Yield Criterion 412 17.1.2 Friction Coefficient and Shear Factor 413 17.1.2.1 Friction Coefficient and Interface Adhesion 413 17.1.2.2 Shear Factor 414 17.1.3 Influence of Friction on Metal Forming 414 17.1.3.1 Influence of Friction on Deformation Force 415 17.1.3.2 Non-Uniform Deformation 415 17.2 Forging Tribology 416 17.2.1 Upsetting Friction 416 17.2.1.1 Cylinder Upsetting 416 17.2.1.2 Ring Upsetting 417 17.2.2 Friction of Open Die Forging 418 17.2.3 Friction of Closed-Die Forging 418 17.2.4 Lubrication andWear 418 17.3 Drawing Tribology 421 17.3.1 Friction and Temperature 421 17.3.2 Lubrication 422 17.3.2.1 Establishment of Hydrodynamic Lubrication 423 17.3.2.2 Hydrodynamic Lubrication Calculation of Drawing 424 17.3.3 Wear of Drawing Die 424 17.3.3.1 Wear of Die Shape 424 17.3.3.2 Wear Mechanism 425 17.3.3.3 Measures to ReduceWear 425 17.3.4 Anti-Friction of Ultrasound in Drawing 427 17.4 Rolling Tribology 429 17.4.1 Friction in Rolling 429 17.4.1.1 Pressure Distribution and Frictional Force 429 17.4.1.2 Friction Coefficient of Rolling 430 17.4.2 Lubrication in Rolling 432 17.4.2.1 Full Film Lubrication 432 17.4.2.2 Mixed Lubrication 432 17.4.3 RollerWear 434 17.4.4 Emulsion Lubricity in Rolling 434 References 435 18 Bio-Tribology 437 18.1 Mechanics Basis for Soft Biological Tissue 437 18.1.1 Rheological Properties of Soft Tissue 437 18.1.2 Stress-Strain Curve Analysis 437 18.1.3 Anisotropy Relationships 439 18.2 Characteristics of Joint Lubricating Fluid 440 18.2.1 Joint Lubricating Fluid 440 18.2.2 Lubrication Characteristics of Joint Fluid 441 18.3 Lubrication of Human and Animal Joints 443 18.3.1 Performance of Human Joint 444 18.3.2 Joint Lubricating Fluid 445 18.3.3 Lubrication Mechanism of Joint 446 18.4 Friction andWear of Artificial Joint 447 18.4.1 Friction andWear Test 447 18.4.2 Wear of Artificial Joint 448 18.4.2.1 ExperimentalMethod and Apparatus 449 18.4.2.2 Test Results 449 18.5 Other Bio-Tribological Studies 451 Referencess 452 19 Space Tribology 453 19.1 Features of Space Agency and Space Tribology 453 19.1.1 Working Conditions in Space 453 19.1.2 Features of Space Tribology Problems 455 19.2 Analysis of Performances of Space Tribology 456 19.2.1 Starved Lubrication 456 19.2.2 Parched Lubrication 456 19.2.3 Volatility Analysis 458 19.2.4 Creeping 460 19.3 Space Lubricating Properties 462 19.3.1 EHL Characteristics of Space Lubricant 462 19.3.2 Space Lubrication of Rolling Contact Bearing 463 19.3.2.1 Bearing Coating 463 19.3.2.2 Lubricant Film Transfer Technology 464 19.3.2.3 Cage Instability 464 References 465 20 Tribology of Micro Electromechanical System 466 20.1 Introduction 466 20.2 Tribological Analysis Technique for MEMS 467 20.2.1 Measurement of Micro/Nano-Frictional Force 467 20.2.2 Stick-Slip Phenomenon 470 20.2.3 Measurement of Micro Adhesive Force 473 20.2.4 Factors Influencing Surface Analysis 473 20.2.4.1 Normal Load 473 20.2.4.2 Temperature 478 20.2.4.3 Sliding Velocity 483 20.3 Tribological Study of a Micro Motor 484 20.3.1 Lubrication of Micro Motor 486 20.3.2 Measurement of Frictional Force 487 20.3.3 Influence Factors 488 20.3.3.1 Intermittent Time 488 20.3.3.2 Humidity 489 20.3.3.3 Hydrodynamic Film and Boundary Film 490 20.4 Wear Analysis of MEMS 491 20.4.1 Mechanism of MicroWear 492 20.4.2 MicroWear of Monocrystalline Silicon 494 20.4.3 MicroWear of Nickel Titanium Shape Memory Alloy 496 20.4.3.1 Indentation 497 20.4.3.2 Temperature 499 20.4.4 Analysis of Surface Bulging 501 20.4.4.1 Bulging Phenomenon 502 20.4.4.2 Mechanism of Bulging 504 References 507 21 Ecological Tribology 509 21.1 Zero Friction and Superlubrication 509 21.1.1 Phenomenon of Superlubrication 509 21.1.2 Mechanisms of Superlubrication 510 21.1.2.1 Superfluidity 510 21.1.2.2 Superlubrication for Special Surface Pair and in a Special Direction 511 21.1.2.3 Superdynamic Friction 512 21.1.2.4 Molecular Polymer Film 513 21.1.3 Discussion of Superlubrication 514 21.1.3.1 Molecular Organization 514 21.1.3.2 Types of Molecular Films 514 21.1.3.3 Influence of External Field 515 21.2 Green Lubricant 516 21.2.1 Introduction of Green Lubricants 517 21.2.1.1 Harmfulness of petroleum products 517 21.2.1.2 Harmfulness ofWaste Oil 517 21.2.1.3 Harmfulness ofWaste Gas 517 21.2.1.4 Green Basis Oils, Lubricating Oil and Additives 517 21.2.2 Development of Green Lubricating Oil for Refrigeration 518 21.2.3 Application Tests 520 21.2.3.1 Application Test of Polyether Oil GE-30T 520 21.2.3.2 Application Test GT-50T 521 21.2.4 Biodegradation Test 521 21.3 Friction-Induced Noise and Control 523 21.3.1 Stick-Slip Model 523 21.3.2 Friction-Induced Noise of Wheel-Rail 524 21.3.3 Friction-Induced Noise of Rolling Contact Bearing 526 21.3.3.1 Sources of Noise 526 21.3.3.2 Influence Factors of Noise 527 21.4 Remanufacturing and Self-Repairing 528 21.4.1 Remanufacturing 529 21.4.1.1 Laser Remanufacturing Technology 529 21.4.1.2 Electric Brush Plating Technology 530 21.4.1.3 Nano Brush Plating Technology 530 21.4.1.4 Supersonic Spray Coating Technology 530 21.4.2 Self-Repairing 531 21.4.2.1 Spreading Film 531 21.4.2.2 Eutectic Film 531 References 532 Index 535
זמן אספקה 21 ימי עסקים